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Abstract In the so-called Bernoulli model of the kinetic theory of gases, where (1) the
particles are dimensionless points, (2) they are contained in a cube container, (3) no attractive
or exterior forces are acting on them, (4) there is no collision between the particles, (5) the
collision against the walls of the container are according to the law of elastic reflection, we
deduce from Newtonian mechanics two local probabilistic laws: a Poisson limit law and
a central limit theorem. We also prove some global law of large numbers, justifying that
“density” and “pressure” are constant. Finally, as a byproduct of our research, we prove the
surprising super-uniformity of the typical billiard path in a square.

Keywords Typical billiard path in a square and in a cube · Elastic reflection · Large
billiard systems · Poisson limit law · Fourier analysis · Parseval’s formula

1 Time-evolution in the Local Case: Poisson Limit Theorem

1.1 Where Does Randomness Come from?

This paper provides rigorous mathematical proofs to support the postulate in statistical me-
chanics that the particles are represented by independent random variables. I recall that the
kinetic theory of gases describes gas as an accumulation of a very large (but finite) number
N of rapidly moving tiny particles (N is at the order of 1020 per cm3, the average speed is
roughly around 103 meter per second at room temperature, depending on the gas, and the
size of the particles is about 10−9–10−10 meter). The particles (= molecules) are colliding
with one another and against the wall of the container. Hence, if for the time-point t = 0 we
know the space coordinates

(xj (0), yj (0), zj (0)), j = 1,2, . . . ,N (1.1)
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and the velocities

(ẋj (0), ẏj (0), żj (0)), j = 1,2, . . . ,N (1.2)

of the particles (we call (1.1) and (1.2) the initial condition), the state of the system is
theoretically determined for the entire future t > 0 too. Theoretically yes, but practically
no: an effective determination of even the simplest properties of gas is completely hopeless
to achieve in that way. Indeed, in order to compute the time evolution of the system of N

particles, we would have to deal with 6N equations in 6N variables, which is of course a
totally unrealistic task if N is in the range of 1020.

It is the general view among physicists, therefore, that the basic properties of gas cannot
be deduced from the principles of classical mechanics alone, and this impossibility was the
basis for a probabilistic treatment called “statistical mechanics”. Statistical mechanics is
based on (often implicit) postulates involving non-Newtonian concepts such as probability
and statistical independence—the later usually combined with uniform distribution. The
physicists prefer to call it “equal a priori probabilities in the phase space”; see any textbook,
e.g., Tolman [18], or Thompson [17], or Uhlenbeck–Ford [19].

As an illustration, consider the famous Maxwell–Boltzmann energy law

Probability(energy = Ej) = e−βEj

∑
i e

−βEi

(where 1/β = kT , k is the Boltzmann’s constant and T is the temperature), which is gener-
ally considered the single most important law in statistical mechanics. Every known mathe-
matical “proof” of the Maxwell–Boltzmann energy law is based on the postulate of equal a
priori probabilities in the phase space.

How can we justify the Equiprobability Postulate? How does probability enter Classical
Mechanics? Unfortunately, the task of finding a rigorous mathematical foundation for Sta-
tistical Mechanics remains largely unsolved. The objective of this paper is exactly to give a
new insight to this long-standing open problem.

We have to admit, however, that the lack of rigorous mathematical foundations is not
such a big headache for the physicists: the majority of them are pragmatists anyway. They
are perfectly satisfied with the fact that Statistical Mechanics works: it can correctly predict
the outcomes of (most of) the experiments. Agreement with experiment is the best substitute
for a rigorous mathematical proof of the Equiprobability Postulate.

Physicists say: “try this; if it works (with reasonable level of accuracy) that will justify
the postulate”. In this paper I represent the viewpoint of a mathematician. With all due
respect (and admiration!) to the physicists, a mathematician by training is obliged to point
out the characteristic fallacy: “inductive experience that the postulate works is not a rigorous
mathematical proof”.

From Physics to Mathematics: Probability Theory What the physicists call equal a pri-
ori probabilities in the phase space is nothing else than the mathematical term (statistical)
independence with uniformly distributed components. In other words, the simplest rigorous
mathematical model in statistical mechanics describes the ideal gas in terms of independent
and uniformly distributed random variables. More precisely, the physical system of an ideal
gas of N particles in a cube container—say, the unit cube [0,1]3—is represented by N mutu-
ally independent random variables X1,X2, . . . ,XN , where each Xj is uniformly distributed
in [0,1]3, meaning that for any measurable subset A ⊂ [0,1]3, Pr[Xj ∈ A] = volume(A).
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Here is a simple but important question that we can easily answer in this probabilistic
model. What is the distribution of the number of particles of an ideal gas lying in a given
fixed domain A ⊂ [0,1]3 of very small volume vol(A) = 1

N
?

Let XA denote the number of particles lying in A; it is a random variable. The expected
value of XA is clearly 1:

EXA = N · 1

N
= 1,

and for any integer 0 ≤ k ≤ N , we have the probability

Pr[XA = k] =
(

N

k

)
1

Nk

(

1 − 1

N

)N−k

. (1.3)

(Of course, (1.3) is 0 if k > N .) If k is fixed and N → ∞, then we have the well-known
limit

Pr[XA = k] = 1

k!
(

1 − 1

N

)N

· N(N − 1) · · · (N − k + 1)

Nk
→ 1

k!e
−1, (1.4)

which is a special case of the Poisson Limit Theorem.
If we switch the (mathematical) expectation from 1 to an arbitrary positive constant

λ > 0, that is, vol(A) = λ
N

, then

lim
N→∞

Pr[XA = k] = λk

k! e
−λ, (1.5)

which is the general case of the Poisson Limit Theorem. (Note that for the Poisson dis-
tribution with parameter λ > 0 (see (1.5)) the expectation and the variance are both equal
to λ.)

Next let A1,A2, . . . ,Ar be a finite sequence of disjoint measurable subsets of the unit
cube [0,1]3, and assume that vol(Ai) = λi/N , i = 1,2, . . . , r . We study the distribution of
the vector-valued random variable (XA1 ,XA2 , . . . ,XAr ), where XAi

denotes the number of
particles lying in Ai (I recall that the N particles are represented by N mutually independent
random variables X1,X2, . . . ,XN , where each Xj is uniformly distributed in [0,1]3). Let
k1, k2, . . . , kr be an arbitrary sequence of non-negative integers with 0 ≤ k1 +k2 +· · ·+kr ≤
N . We have

Pr[(XA1 ,XA2 , . . . ,XAr ) = (k1, k2, . . . , kr )]

=
(

N

k1

)(
N − k1

k2

)

· · ·
(

N − k1 − · · · − kr−1

kr

)(
λ1

N

)k1
(

λ2

N

)k2

· · ·
(

λr

N

)kr

·
(

1 − λ1 + λ2 + · · · + λr

N

)N−k1−···−kr

.

If k1, k2, . . . , kr are fixed and N → ∞, then we have the simple limit

lim
N→∞

Pr[(XA1 ,XA2 , . . . ,XAr ) = (k1, k2, . . . , kr )]

= λ
k1
1

k1! e
−λ1 · λ

k2
2

k2! e
−λ2 · · · λkr

r

kr ! e
−λr . (1.6)

Comparing (1.5) to (1.6), it is natural to call (1.6) the Poisson product formula.
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Let’s return to (1.3). If we switch from constant to λ = λ(N) with λ(N) → ∞ but
λ(N)/N → 0 as N → ∞, then (1.3) remains true with λ/N instead of 1/N , but the limit in
(1.5) is replaced with the De Moivre–Laplace limit

lim
N→∞

∑

c1
√

λ≤k−λ≤c2
√

λ

Pr[XA = k] = 1√
2π

∫ c2

c1

e−u2/2 du (1.7)

for any fixed real numbers −∞ < c1 < c2 < ∞. Notice that (1.7) is a special case of the
Central Limit Theorem (or “normal law”, or “bell curve law”, or “Gaussian distribution
law”) in the special case of the asymmetric binomial distribution.

The Poisson Limit Theorem and the Central Limit Theorem are the two most important
limit theorems; they are the trademarks of probability theory.

Now we leave the probabilistic model, and return to Newtonian mechanics. The objective
of this paper is to show that, in the case of a very simple deterministic model, namely, where
the following five properties hold:

(1) the particles are dimensionless points of equal mass,
(2) they are contained in a cube container,
(3) no attractive or exterior forces are acting on them,
(4) there is no collision between the particles,
(5) the collisions against the walls of the container are according to the law of elastic reflec-

tion (i.e., the angle of incidence equals the angle of reflection),

we can deduce from the fundamental principles of mechanics the two probabilistic laws
described in (1.3)–(1.7). More precisely, we prove that the time-evolution of the determin-
istic model exhibits a local Poisson Limit Theorem and a local Central Limit Theorem; see
Theorem 1 below.

Also, we will prove a global law of large numbers implying that “the density is constant”;
see Theorems 2 and 3 in Sect. 3. (The fourth main result, Theorem 4 in Sect. 4, is about the
“super-uniformity” of the typical billiard paths in a square or a rectangle. The surprising
message is that, the “ugliness” of the measurable subset A ⊂ [0,1]2 we test the uniformity
with, is basically irrelevant!)

We may call the model described by (1)–(5) the “Bernoulli model”, after Daniel Bernoulli
who introduced a similar model around 1738. What we do in this paper is a quantitative
theory of the Bernoulli model, providing explicit error terms. Instead of relying on ergodic
theory—which is considered the traditional mathematical approach to rigorous statistical
mechanics—our approach is built around the Kronecker–Weyl equidistribution theorem and
the use of hard Fourier analysis.

The five properties (1)–(5) of our simple deterministic model (“Bernoulli model”) can be
restated in an illuminating way in terms of point-billiard: N non-interacting billiard balls—
each represented by a point mass—move freely inside a cube container, each one along a
straight line, until one hits the wall (i.e., one of the six faces of the cube). The reflection off
the wall is elastic; after the reflection the point (= billiard ball) continues its linear motion
with the new velocity (but the speed remains the same; we ignore friction, air resistance,
etc.) until its hits the wall again, and so forth. The same applies for all N billiard balls
(= points = “molecules”).

The initial condition, i.e., the starting point of the billiard path and the initial direction,
uniquely determine an infinite piecewise linear billiard path x(t) = (x1(t), x2(t), x3(t)), 0 <

t < ∞ in the unit cube. For simplicity, consider first the billiard path in the unit square; the
law of reflection implies that there are at most four different directions along the billiard



164 J. Beck

path: the initial direction is preserved modulo π/2 (= the angle of the square), which is one-
fourth of the whole angle 2π . If we switch from the unit square to the d-dimensional unit
cube with any d ≥ 3, then again the law of reflection implies that there are only a bounded
number of different directions along the billiard path (of course the bound depends on the
dimension d).

Let’s return to the point-billiard in the unit cube. The vague term of “typical billiard path”
can be made precise very easily: we just have to define a measure on the set of all initial
conditions of the billiard paths. The initial condition consists of a starting point y ∈ [0,1)3

and an initial direction u ∈ S2 (here u is a 3-dimensional unit vector and S2 is the unit
sphere; note that the speed remains constant as the time passes). Therefore, the correspond-
ing measure is simply the product of the 3-dimensional Lebesgue measure in the unit cube
(“volume”) and the normalized surface area on the unit sphere S2.

This way a vague term such as “1 − ε part of all billiard paths” becomes perfectly pre-
cise. Similar argument works for a large system of N point-billiards (we take the product
measure, which is the natural measure in the phase space).

1.2 The Trick of Unfolding

Next we explain the well-known trick of unfolding the billiard path inside the unit cube to a
straight line in the entire 3-space. The idea is very simple and elegant: we keep reflecting the
unit cube in the respective face (where the path hits the boundary) and unfold the piecewise
linear billiard path (“broken line”) to a straight line. We strongly recommend the reader to
draw a picture in the plane, and see how the “broken” billiard path becomes a straight line
via unfolding (of course in the plane the cube is replaced by the square, and the face is
replaced by the side).

Two straight lines in the 3-space correspond to the same billiard path if and only if they
differ by a translation through an integral vector where both coordinates are even, i.e., where
the vector is from the lattice 2Z+2Z+2Z. In other words, the problem of the distribution of
a billiard path in the unit cube is equivalent to the distribution of the corresponding torus-line
in the 2 × 2 × 2 cube.

As far as I know, the first appearance of the geometric trick of unfolding is in a paper
of D. König and A. Szücs from 1913, and it became widely known after Hardy and Wright
included it in their famous book on number theory [5]. König and Szücs used the trick
of unfolding (combined with the Kronecker–Weyl theorem) to prove the following elegant
property of the billiard path in a square: if the slope of the initial direction is rational, then the
billiard path is periodic, and if the slope of the initial direction is irrational, then the billiard
path is dense, and what is more, it is uniformly distributed in the unit square (see [5]). No-
tice that the analog statement for torus-lines is the famous Kronecker–Weyl equidistribution
theorem (I will return to the Kronecker–Weyl theorem later in Sects. 2–4).

1.3 Time-evolution in the Deterministic Bernoulli Model: Theorem 1

In our simplistic Bernoulli model the particles don’t collide with one another, so the speed
vk of the kth particle remains constant, and, as I said above, the velocity is also basically
constant: the velocity (= time-derivative)

ẋj (t) = (ẋj,1(t), ẋj,2(t), ẋj,3(t))

of the j th particle can have only a few different values as 0 < t < ∞ (due to the elastic
collisions against the walls, a consequence of the right angles in the cube). We can say,
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therefore, that, unlike the position, the velocity of a fixed particle (= billiard ball) does
not “mix” as 0 < t < ∞. To make our deterministic model more realistic, we could easily
assume that the speeds v1, . . . , vN of the N particles satisfy the Maxwellian distribution
(= normal distribution). But because the proof is rather complicated and the notation is quite
messy, for simplicity we decided to restrict ourselves to the special case where all speeds
are equal:

v1 = v2 = · · · = vN = v ≥ 1.

Theorem 1 Assume that N non-interacting billiard balls, each represented by a point mass,
move freely inside the unit cube I 3 = [0,1]3 such that the reflection off the wall (= side of
the cube) is elastic. Let xj (t) = (xj,1(t), xj,2(t), xj,3(t)) describe the trajectory of the j th
billiard ball (= point) in the time interval 0 ≤ t ≤ T , where xj (0) = yj is the initial position,
ẋj (0) = v · uj is the initial velocity and v > 0 is the common speed (uj is a unit vector, i.e.,
uj ∈ S2 = unit sphere; N ≥ 1, T > 1 and v > 1 are arbitrary, but the theorem becomes
interesting only if N and vT are both large).

Let A ⊂ I 3 be an arbitrary Lebesgue measurable subset of the unit cube with volume
vol(A) = λ/N (the range of parameter λ > 0 will be given in (1.9) below). Let YA(t) denote
the point-counting function:

YA(t) =
∑

1≤j≤N :
xj (t)∈A

1.

Let

m = min

{
e

1
2

√
log(vT )

101
,
√

N

}

and ε = 1√
m

, (1.8)

where log denotes the natural (i.e., base e) logarithm.
Then for more than 1 − ε part of the initial conditions

ω = (y1, . . . ,yN,u1, . . . ,uN) ∈ (
I 3
)N × (

S2
)N = �

(in the sense of the product measure on �), the distribution of the point-counting function

YA(ω; t) = YA(y1, . . . ,yN,u1, . . . ,uN ; t)

is very close to the Poisson distribution with parameter λ (assuming N and vT are both
large) in the following quantitative sense: for every real number

0 < λ ≤ logm

8
(1.9)

and every integer k ≥ 0,

∣
∣
∣
∣

1

T
measure{0 ≤ t ≤ T : YA(ω; t) = k} − λk

k! e
−λ

∣
∣
∣
∣< ε. (1.10)

Finally, we can generalize (1.10) to get the following analog of the product formula (1.6).
Let A1,A2, . . . ,Ar be an arbitrary finite sequence of disjoint measurable subsets of the unit
cube [0,1]3 with vol(Ai) = λi/N , i = 1,2, . . . , r . Then for more than 1 − ε part of the
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initial conditions ω ∈ �, (in the sense of the product measure on �), the distribution of the
point-counting function

∣
∣
∣
∣
∣

1

T
measure{0 ≤ t ≤ T : (YA1(ω; t), . . . , YAr (ω; t)) = (k1, . . . , kr )}

− λ
k1
1

k1! e
−λ1 · · · λkr

r

kr ! e
−λr

∣
∣
∣
∣
∣
< r · ε (1.11)

holds for all r ≥ 1, all vectors (k1, . . . , kr ) of non-negative integers, and all

0 < λi ≤ logm

8
(1 ≤ i ≤ r).

Remarks (a) In statistical mechanics one usually studies the limit process, sometimes
called thermodynamics, where the ratio particle/volume remains a fixed constant as
N → ∞. More precisely, we replace the unit cube with a large cube of volume N/λ (i.e.,
the side length is (N/λ)1/3) with some fixed constant λ > 0, and consider the limit N → ∞
(i.e., the number of particles tends to infinity). For every N , let A = A(N) be an arbitrary
measurable subset of volume(A(N)) = 1 (a subset of the large cube of volume N/λ), and
we study the distribution of the number of particles in A = A(N) during a long time-interval
0 < t < T . Theorem 1 makes it possible to carry out the limit process precisely. Theorem 1
implies that, independently of the way we take the double limit N → ∞ and T → ∞ (i.e.,
the relative relation of N and T is totally irrelevant), the number of particles in A = A(N)

has a definite limit distribution, which is the Poisson distribution with parameter λ > 0.
We emphasize that the relevant limit in statistical mechanics is when first T is fixed and
N → ∞, and then, in the second step, T → ∞.

(b) It is remarkable that the “complexity” of the given subset A ⊂ [0,1]3 does not play
any role in the theorem. Of course we cannot say anything nontrivial about all possible
measurable A ⊂ [0,1]3 simultaneously (since the volume of a billiard path is zero). We can
easily generalize, however, Theorem 1 for an arbitrary infinite sequence A1,A2,A3, . . . of
measurable subsets of the unit cube with vol(Ai) = λi/N . The only necessary modification
in (1.10) is to insert a weight factor in the upper bound:

∣
∣
∣
∣

1

T
measure{0 ≤ t ≤ T : YAi

(ω; t) = k} − λk
i

k! e
−λi

∣
∣
∣
∣< iε

for all i = 1,2,3, . . . .
(c) Theorem 1 is about a single time-interval 0 ≤ t ≤ T , where T is arbitrary but fixed. It

is natural to ask what happens in the sequential case, that is, when we study the distribution
of the point-counting function YA(t) as t runs in 0 ≤ t ≤ T simultaneously for all 0 < T <

T0, where T0 is some large real number. It is not too difficult to prove such a sequential
version of Theorem 1 by using a straightforward adaptation of the so-called dyadic method,
originally developed for orthogonal series.

We can “sequentialize” Theorem 1 as follows. For every

2 < T < eN1/8
(1.12)
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write

m(T ) = min

{
e

1
2

√
log(vT )

101
,
√

N

}

and ε(T ) = 1√
m(T )

,

then (say) for more than 99.99 percent of the initial conditions

ω = (y1, . . . ,yN,u1, . . . ,uN) ∈ (
I 3
)N × (

S2
)N = �

the distribution of the point-counting function

YA(ω; t) = YA(y1, . . . ,yN,u1, . . . ,uN ; t)
is very close to the Poisson distribution with parameter λ in the following sense:

∣
∣
∣
∣

1

T
measure{0 ≤ t ≤ T : YA(ω; t) = k} − λk

k! e
−λ

∣
∣
∣
∣< ε(T ) (1.13)

holds for every T in (1.12), for every real number 0 < λ ≤ logm(T )

8 and for every integer
k ≥ 0.

Note that in the kinetic theory of gases the number of particles is N ≈ 1024, so the upper
bound for T in (1.12) is in the range of e103

, which is “effectively infinite”.
The message of this sequential version of Theorem 1 is the following: as more and more

time passes, the distribution of the point-counting function YA(t) gets closer and closer to the
Poisson distribution, and the speed of convergence is basically independent of the number
of particles. Nevertheless, the number of particles is crucial in an indirect way: it gives a
natural limitation to the Poisson approximation.

(d) We can give an “ergodic theorem type” interpretation of Theorem 1 in the sense of
the equality

space-average = time-average.

Indeed, at the beginning t = 0, the initial positions xj (0) = yj , 1 ≤ j ≤ N of the N point-
billiards are independent and uniformly distributed random variables (uniformly distributed
in the unit cube [0,1]3). So the number of points YA(ω;0) at the start t = 0 in a given (mea-
surable) subset A ⊂ [0,1]3 of volume vol(A) = λ/N (ω is the complete initial condition)
has the binomial distribution (let 0 ≤ k ≤ N ):

Pr[YA(ω;0) = k] =
(

N

k

)(
λ

N

)k

·
(

1 − λ

N

)N−k

→ λk

k! e
−λ

that approximates the Poisson distribution with parameter λ > 0 as λ is fixed and N → ∞.
On the other hand, by (1.10) and (1.13), for a typical but fixed initial condition ω0 ∈ �, the
time evolution of the counting function YA(ω0; t) approximates the same Poisson distribu-
tion as 0 ≤ t ≤ T → ∞. Therefore, we can roughly say that

space-average = Poisson distribution = time-average,

which is indeed in the spirit of the ergodic theorem. There is, however, a fundamental dif-
ference between Theorem 1 and (say) Birkhoff’s individual ergodic theorem. The ergodic
theorem is a soft/qualitative result: it does not say anything about the speed of convergence;
it does not give any error term. Theorem 1, on the other hand, is a hard/quantitative result:
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it gives an explicit (and not too bad) error term describing the speed of convergence to the
Poisson distribution.

(e) The condition (1.9) means that parameter λ can be arbitrarily large. It is a classical
result in probability theory that for large values of parameter λ the Poisson distribution can
be well-approximated with the normal distribution: for any fixed real numbers −∞ < c1 <

c2 < ∞,

lim
λ→∞

∑

c1
√

λ≤k−λ≤c2
√

λ

λk

k! e
−λ = 1√

2π

∫ c2

c1

e−u2/2 du. (1.14)

The proof of (1.14) is a routine application of Stirling’s formula; the following variant is
particularly precise and useful:

(n

e

)n √
2πn · e 1

12n+1 < n! <
(n

e

)n √
2πn · e 1

12n . (1.15)

Also, by using (1.15) we can easily obtain a very good estimation on the speed of conver-
gence in (1.14).

(f) Notice that vT is the distance made by either billiard ball (= point) in the time interval
0 ≤ t ≤ T . Theorem 1 becomes interesting when both N and vT are large. In kinetic theory
of gases N is enormous (the number of molecules in a standard unit volume is around
N = 1023) and vT is also “large”. Indeed, the hydrogen gas at room temperature has mean
speed around v = 103 meter per second. If the container is a cube of side length (say) 10−1

meter, then in one-second time (i.e., T = 1) a hydrogen molecule travels a distance about
103 meters, which is ten-thousand times the size of the container. It is fair to call 104 “large”.

In (1.8) we defined the key parameter m in terms of a subpolynomial function

e
√

log(vT ) (1.16)

of vT . I conjecture that the subpolynomial function in (1.16) can be substantially improved;
probably up to a small power of vT ; perhaps even to (say)

√
vT . (Needless to say, the

constant factor 101 in (1.8) is “accidential”; we didn’t make any serious effort to find a
better constant.)

(g) In our simplistic Bernoulli model the “mixing” of the system comes exclusively from
the effect of point particles elastically reflected by a flat wall (one of the six faces of a cube).
This is not too realistic for several reasons. One reason is that the wall, though it looks
flat at a macroscopic level, certainly shows a complicated/detailed non-flat structure at a
microscopic level (i.e., at the level of the gas molecules).

Another reason is that real world molecules are not dimensionless points; they have
a well-defined size roughly around 10−10 meter (this remarkable fact is known since the
1860s). This size is not negligible, and this is why in normal conditions (say, at room temper-
ature) the collision of a particle with another particle is several thousand times more likely
than the collision against the wall. (This explains why, despite the large speed of the mole-
cules, gases mix relatively slowly. For example, suppose hydrogen sulfide is generated at one
end of a room; it may take a couple of minutes before the odor is noticed at the other end.)
The collision of the molecules one another is the source of “mixing” the individual veloc-
ities. An attempt to understand and describe the effect of molecule-molecule collision was
the main motivation for the theory of “dispersing and semi-dispersing billiards”—initiated
by Sinai and his school—developed in the last 40 years.

The subject of dispersing (or scattering, or chaotic) billiards has a large literature now.
I am certainly not an expert, so I just briefly mention that the most important tool they use is
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the “Markov partition”, which is very different from what I am doing here. I refer the reader
to the book Chaotic Billiards by N. Chernov and R. Makarian [2]; see also the volume Hard
Balls and the Lorentz Gas (Encyclopedia of Mathematical Sciences, vol. 101, Mathematical
Physics II, editor: D. Szász, Springer, 2000) and the recent papers of N. Simányi [11, 12],
which are about arbitrary number of particles, and are regarded the strongest known results.
(Unfortunately, these results assume that the mass-distribution of the particles is random
(“generic”), which is not too realistic in physics.)

(h) Theorem 1 works in any dimension d ≥ 1. The obvious reason why I stated the result
in the special case d = 3 is the motivation from physics.

(i) Summarizing, we can say that, our simplistic flat-wall-collision model (“Bernoulli
model”) has a very limited source of “mixing” (in particular, the individual velocities do
not mix at all—since we are ignoring the scattering molecule-molecule collisions). Never-
theless, even this very restrained model can exhibit remarkable randomness in the form of
an explicit Poisson Limit Theorem and a Central Limit Theorem. This demonstrates that
rigorous mathematical reasoning based strictly on classical mechanics can prove some of
the signature laws of the probabilistic model. (Needless to say, the extreme simplicity of the
Bernoulli model greatly helps to overcome the mathematical difficulties.)

(j) It is interesting to point out that Theorem 1 remains true if we replace the Bernoulli
model with the so-called exchange-velocity-at-impact hard ball model, in which we repre-
sent the particles by solid balls of equal size with small but positive radius and equal mass.
We permit collisions of two—but not three or more—particles (= tiny balls), and make the
simplifying assumption that at impact they simply exchange their velocities. In other words,
by changing the labels of the two particles, they simply continue their way as if no collision
had happened. This gives back the Bernoulli model, and this is why Theorem 1 applies.
(Note, however, that this way—i.e., by changing the labels of the particles involved in the
collision—we lose to some extent the deterministic character of the model.)

Note that the possibility of a deterministic kinetic theory of gases fascinated mathemati-
cians for a long time. I refer the reader to the early works of Steinhaus [15, 16], Egerváry and
Turán [4], and Hlawka [6] (are there other works in the subject that I don’t know about?).

There is also a rather vague and informal argument in Lecture 8 (“Ergodic theory of an
ideal gas”) in Sinai’s book [13] about the one-dimensional ideal gas that the reader may find
interesting, and want to compare to what we are doing in this paper. See also the paper of
Sinai and Volkovsky [14], and perhaps we can also mention the somewhat related paper of
Prosser [10].

I should point out that there are three more theorems (see Sects. 3–4 for the details) that
are worthwhile to be briefly mentioned here. Theorem 1 clarifies the probabilistic aspects
of the time-evolution in the local case, i.e., when the expected number of point-billiards in
A ⊂ [0,1]3 is just a constant (or it tends to infinity very slowly compared to the number
of points N ). But what happens in the global case when vol(A) jumps up from O(1/N)

to the constant range such as (say) 1/10 < vol(A) < 9/10? That is, when the expected
number of point-billiards in A is as large as constant times N? I will discuss this question
in Sect. 3 (see Theorems 2 and 3). Also, in Sect. 4 I will discuss a surprising byproduct of
this research: the astonishing “super-uniformity” of the typical billiard paths in a square (or
rectangle). Roughly speaking, the set of typical billiard paths represents the family of most
uniformly distributed curves in the square. I will prove a quantitative result justifying this
vague statement (see Theorem 4).

Before talking about these global results in Sects. 3–4, in the next section I give some
intuition behind the complicated proof of Theorem 1.



170 J. Beck

2 Some Guiding Intuitions

2.1 First Guiding Intuition: Kronecker–Weyl Equidistribution Theorem

The proof of Theorem 1 is very long, so it is crucial to emphasize the main reason why
it works. If I have to put it in one sentence, then I would say: it is the continuous ver-
sion of the well-known Kronecker–Weyl equidistribution theorem (a fundamental result in
uniform distribution) that I consider the soft/qualitative reason behind the hard/quantitative
Theorem 1. Let α1, α2, . . . , αd be linearly independent over the rationals (this is a “typical”
property) and let R =∏d

i=1[ai, bi] be an arbitrary rectangular box (i.e., Cartesian product of
intervals) in the d-dimensional unit cube [0,1]d (where d ≥ 1 is an arbitrary integer). The
Kronecker–Weyl theorem states that

lim
T →∞

1

T
meas{0 ≤ t ≤ T : (tα1, tα2, . . . , tαd) ∈ R (mod 1)} = vol(R) =

d∏

i=1

(bi − ai), (2.1)

where of course “meas” stands for the one-dimensional Lebesgue measure and “vol”
stands for the d-dimensional volume. The message of (2.1) is that the d events “tαi ∈
[ai, bi] (mod 1)”, 1 ≤ i ≤ d become independent in the limit as the length T of the interval
of consideration 0 ≤ t ≤ T tends to infinity. We can say, therefore, that (2.1) is an “asymp-
totic product rule”; on the other hand, (statistical) independence is perfectly characterized
by the product rule.

The next step is to recall the well-known fact that the σ -algebra of Lebesgue measur-
able sets is generated by the family of rectangular boxes (Cartesian product of intervals)∏d

i=1[ai, bi]. Putting these together, we obtain the chain of implications

Kronecker–Weyl theorem =⇒ weak independence =⇒ Poisson’s limit theorem, (2.2)

which is the guiding intuition of the long proof of Theorem 1.
I have to point out that the connection between the Kronecker–Weyl theorem and (sta-

tistical) independence was already noticed by M. Kac (see his argument in Sect. 3.5 in his
well-known book [7]), and also it was implicitly stated in Sinai’s book [13]. It is fair to say,
therefore, that the first half of (2.2):

Kronecker–Weyl theorem =⇒ weak independence

is a folklore observation/intuition. Of course, there is a world of difference between a vague
intuition and a rigorous mathematical proof. To illustrate this, note that Theorem 1 is a
local result, and the problem of finding a global analog of Theorem 1 (i.e., a global central
limit theorem for the time-evolution) leads to some unexpected results. I will return to this
exciting question in Sect. 3.

It is worth while to briefly discuss here a quantitative version of the qualitative (2.1).
For simplicity I restrict myself to the discrete sequence na (mod 1), n = 1,2,3, . . . (where
a = (α1, . . . , αd)), and we test uniformity with respect to the family of all axes-parallel boxes
R = I1 × · · · × Id where Ii = [ai, bi] ⊂ [0,1]: let


(a;N) = max
1≤m≤N

Ii⊂[0,1]:1≤i≤d

∣
∣
∣
∣

∑

1≤k≤n:
ka∈I1×···×Id (mod 1)

1 − n|I1| · · · |Id |
∣
∣
∣
∣
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denote the discrepancy function. What can we say about the asymptotic behavior of the
discrepancy function 
(a;N) as N → ∞ for almost every a = (α1, . . . , αd)?

In 1923 Khinchine [8] solved the one-dimensional problem: he proved that for al-
most every α, the discrepancy function 
(α;N) is between logN · log logN and logN ·
(log logN)1+ε . His proof made use of the theory of continued fractions (see also his
book [9]).

Unfortunately, the classical theory of continued fraction does not seem to generalize in
higher dimensions, so the multidimensional generalization of Khinchine’s theorem remained
an open problem for a long time. Finally, in 1994 I [1] succeeded to prove it by using
Fourier analysis (instead of continued fractions): for every d ≥ 1 and for almost every a =
(α1, . . . , αd), the discrepancy function


(a;N) is between (logN)d · log logN and (logN)d · (log logN)1+ε. (2.3)

What is more, we can upgrade (2.3) to a precise convergence-divergence criterion.
Despite the big differences between (2.3) and Theorem 1 (one is about the family of all

axes-parallel boxes and the other one is about an arbitrary but fixed measurable subset A),
there is an important similarity: both proofs use “hard” Fourier analysis (and both are very
long).

2.2 Comparing Theorem 1 to the Erdős–Kac Theorem

It is very instructive to compare the “asymptotic independence” in (2.1) and our Theorem 1
to the well-known Erdős–Kac theorem about the number of prime factors of typical integers.
Note that beyond games of chance it is very hard to find “natural” examples of perfect
independence in mathematics, and the unique factorization property of integers gives an
example where at least some kind of an almost independence arises in a natural way. Let p

be a prime number, and let Xp = Xp(n) be a function defined on the set of natural numbers
as follows: Xp(n) = 1 if n is divisible by p, and 0 otherwise. In other words, Xp = Xp(n)

is the characteristic function of the set of multiples of p. For any integer r ≥ 2 and for any
set 2 ≤ p1 < p2 < · · · < pr of r different primes we have

|{1 ≤ n ≤ N : Xp1(n)Xp2(n) · · ·Xpr (n) = 1}| =
⌊

N

p1p2 · · ·pr

⌋

(2.4)

(where �y� denotes the lower integral part of y), and so

lim
N→∞

1

N
|{1 ≤ n ≤ N : Xp1(n)Xp2(n) · · ·Xpr (n) = 1}| = 1

p1p2 · · ·pr

, (2.5)

where I used the standard notation | · · · | to denote the number of elements of a finite set.
Equation (2.5) is an “asymptotic product rule” (similarly to (2.1)), expressing the vague in-
tuition “the primes are independent” in a precise statement. Of course (2.5) is not a deep
result, but it is important: it was the starting point of the fascinating study of describing the
number of prime factors of typical integers—a subject where we can supplement the “ap-
parent randomness” with rigorous proofs. Using the traditional notation in number theory,
we define ω(n) as the number of different prime factors of n, and �(n) as the total number
of prime factors (i.e., each prime is counted with multiplicity). Thus, for n = p

α1
1 p

α2
2 · · ·pαr

r

we have

ω(n) = r and �(n) = α1 + α2 + · · · + αr .
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Both ω(n) and �(n) behave very irregularly as n → ∞. The minimum is 1, and it is at-
tained for the primes. On the other hand, �(n) can be as large as log2 n = logn/ log 2, and
it happens for n = 2k ; ω(n) can be as large as (1 + o(1)) logn/ log logn, and asymptotic
equality is attained for the products n = 2 · 3 · 5 · 7 · 11 · · ·pr of the small primes.

Both ω(n) and �(n) show “apparent randomness”, which is very plausible from the fact
that

ω(n) =
∑

p

Xp(n), (2.6)

that is, ω is the sum of the almost independent Xps (see (2.4)–(2.5)). Of course, in (2.6) we
can restrict the infinite summation to p ≤ n.

By using standard number theory, it is easy to show that the average order of both ω(n)

and �(n) is log logn. The pioneering result about ω(n) (and �(n)) was proved by Hardy
and Ramanujan in 1917. They showed that, for the overwhelming majority of n, ω(n) falls
into the interval

log logn − (log logn)1/2+ε < ω(n) < log logn + (log logn)1/2+ε. (2.7)

That is, the typical fluctuation of ω(n) (and �(n)) around the expected value log logn is
(roughly speaking) at most square root size. This line of research culminated in the following
elegant central limit theorem proved in 1939.

Theorem (Erdős–Kac Theorem) Let −∞ < a < b < ∞ be arbitrary reals; then the density
of integers n for which

log logn + a
√

log logn < ω(n) < log logn + b
√

log logn

is given by the integral

1√
2π

∫ b

a

e−x2/2 dx.

The same holds for �(n).

Note that these results are capable of far-reaching generalizations: this led to the devel-
opments of a new branch called probabilistic number theory.

Let me summarize the similarity between Theorem 1 and the Erdős–Kac theorem. Both
are based on relatively simple “asymptotic product rules” (see (2.1) and (2.5)), but the switch
from the “soft intuition” to the “hard theorem” is far from easy—it fits to say that in both
cases the devil is in the details. (For example, in the case of the Erdős–Kac theorem, Kac
had the right intuition, but got stuck on the technical details, and was helped out by the
number-theoretic expertise of Paul Erdős.)

2.3 Second Guiding Intuition: The Poisson Point Process as a “Fixpoint”

In the well-known book on ergodic theory [3] there is an infinite model that the authors
call the “ideal gas in the d-dimensional space”. This construction is not used in our proof
of Theorem 1; nevertheless, it is definitely worth while to be mentioned here as a guiding
intuition. The reason is that in this infinite model the Poisson point process turns out to be
invariant under the time evolution. This crucial fact gives a new insight to the central role of
the Poisson distribution.
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The infinite model in [3] is rather different from our Bernoulli model of “finitely many
non-interacting point particles in a box container”. The infinite model represents the ideal
gas as “infinitely many non-interacting point particles in the whole d-dimensional space R

d

with no walls”. The precise definition goes as follows (see Sect. 1 in Chap. 9 of [3]).
We work with the usual space coordinates x = (x1, . . . , xd) ∈ R

d , the velocity v =
(v1, . . . , vd) ∈ R

d , and consider the pair

(x,v) = (x1, . . . , xd, v1, . . . , vd) ∈ R
d
x ⊕ R

d
v = R

2d .

The constant speed linear motion is described by the simple differential equations

dx
dt

= v,
dv
dt

= 0. (2.8)

This defines the following one-parameter group (“time evolution”):

St (x,v) = (x + vt,v). (2.9)

A well-known theorem of Liouville yields that every product measure of the form

dρ = dxf (v)dv (2.10)

is invariant under the one-parameter group St (“time evolution”) defined in (2.9). The func-
tion f (v) in (2.10) is positive; it means any density function with

∫ ∞

−∞
f (v) dv = 1. (2.11)

Of course, in statistical mechanics the natural choice for f (v) is the Maxwell distribution

f (v) = const · e−βv·v,

where β > 0 and v · v = v2
1 + · · · + v2

d is the usual dot product.
Let

Y = {(x1,v1), (x2,v2), (x3,v3), . . .} ⊂ R
2d

be a locally finite set, which means that for every bounded subset B ⊂ R
2d , the intersection

Y ∩ B is finite; formally, |Y ∩ B| < ∞. Note that Y represents the set of point-particles in
a given instant. Let Y denote the space of all locally finite sets Y ⊂ R

2d . Let C denote the
smallest σ -algebra such that all counting functions χB = χB(Y ) = |Y ∩ B| are measurable,
where B runs through the bounded Borel sets in R

2d .
In other words, C is the smallest σ -algebra containing all sets

CB,k = {Y ∈ Y : |Y ∩ B| = k} ,

where B ⊂ R
2d is any bounded Borel set and k ≥ 0 is any integer.

To define the Poisson point process, we introduce a measure μ = μ(ρ) on the σ -algebra
C as follows. For any bounded Borel set B ⊂ R

2d and any integer k ≥ 0, let

μ
(
CB,k

)= (ρ(B))k

k! e−ρ(B), (2.12)
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and if two bounded Borel set B1,B2 ⊂ R
2d are disjoint, then

μ
(
CB1,k1 ∩ CB2,k2

)= μ
(
CB1,k1

)
μ
(
CB2,k2

)
(2.13)

holds for all integers k1 ≥ 0 and k2 ≥ 0. Of course, (2.12) is the Poisson distribution, and
(2.13) means that the random variables χB1 = χB1(Y ) and χB2 = χB2(Y ) (where Y ∈ Y ) are
independent. Finally, note that, by using (2.12) and (2.13), there is a unique way to extend
μ = μ(ρ) to the whole σ -algebra generated by the sets CB,k , i.e., to the σ -algebra C . Thus
we obtain a probability space (Y, C,μ = μ(ρ)), where dρ = dxf (v)dv (see (2.10)) is a
special product measure on R

2d . We call μ = μ(ρ) the Poisson measure.
The key property of the Poisson measure μ = μ(ρ) is that it is invariant under the “time

flow”. More precisely, for every locally finite set

Y = {(x1,v1), (x2,v2), (x3,v3), . . .} ∈ Y,

and for every real number t (= time), write

T tY = {
St (x1,v1), S

t (x2,v2), S
t (x3,v3), . . .

}

= {(x1 + v1t,v1), (x2 + v2t,v2), (x3 + v3t,v3), . . .} .

We call T t the time flow. (Note that T t is well-defined on Y : T t takes a locally finite set Y

into another locally finite set.)
The key fact that the Poisson measure μ = μ(ρ) is invariant under the time flow T t is a

simple consequence of Liouville’s theorem. Indeed, we have

μ
(
T tCB,k

)= μ
(
CStB,k

)= μ
(
CB,k

)
,

where in the last step we used that dρ = dxf (v)dv is invariant under the one-parameter
group St (“time evolution”), i.e., Liouville’s theorem.

(It resembles the case of the central limit theorem, where the key property of the normal
distribution is that it is the fixpoint of the Fourier transform. Here in our case the Poisson
measure is also a “fixpoint”: it is invariant under the time flow.)

The book [3] calls the dynamical system

(Y, C,μ(ρ), T t ) (2.14)

the “ideal gas in the d-dimensional space R
d”. The dynamical system (2.14) turns out to

be ergodic (in fact, it has the stronger property of mixing). Ergodicity means that we can
apply Birkhoff’s individual ergodic theorem: it says that, for almost every initial condition
(say, at t = 0), the time average of the event “a bounded Borel set B ⊂ R

2d contains k

point-particles” converges to the Poisson distribution

(ρ(B))k

k! e−ρ(B)

as t → ∞. This is similar to the statement of Theorem 1, and thus gives a deep insight of
the problem.
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2.4 Ergodic Theory Versus Fourier Analysis: Soft vs. Hard

I have to emphasize, however, that the last arguments—the Poisson point process and the
ergodic theorem—are not used in our proof of Theorem 1. This is not surprising at all:
the ergodic theorem is a “soft” result in the sense that it does not say anything about the
speed of convergence. The main point in Theorem 1 is exactly that it is a hard/quantitative
result with an explicit error term, where the error term—surprisingly!—does not depend on
the ugliness of the test set. This kind of quantitative statement is beyond the power of the
ergodic theorem.

We can thus say that Theorem 1—a result about the time evolution of a system—is ba-
sically a “hard ergodic theorem” (well, at least in a special case). The ergodic theorem is
generally considered a difficult/deep result; it is not surprising, therefore, that our proof of
Theorem 1 is complicated.

In Theorem 1 the number of point-particles N can be arbitrarily large, and we can carry
out the limit where the time interval T is fixed and the number of particles N tends to infinity.
This is the relevant limit in statistical mechanics, where the number of particles is astronom-
ically large (in the range of the Avogadro number ≈ 1024), but the time is relatively short.
The fundamental weakness of applying Birkhoff’s ergodic theorem in statistical mechanics
is exactly the “wrong limit”. In the ergodic theorems the time tends to infinity, and these
statements are “soft” by nature: they simply cannot provide any information on the speed of
convergence. In other words, the ergodic theorem cannot help to carry out the relevant limit
in statistical mechanics. This explains the importance of using hard Fourier analysis instead.

Note that in the proof of Theorem 1 we apply some standard tools from Fourier analy-
sis (repeated applications of Parseval’s formula, Cauchy–Schwarz inequality, etc.), and
also some measure-theoretic and combinatorial arguments (e.g., Chebyshev’s inequality,
inclusion-exclusion formula). The tools are standard; the real difficulty is how to put these
standard tools together (the devil is in the details).

3 Time-evolution in the Global Case

3.1 What about the Central Limit Theorem?

Theorem 1 clarifies the probabilistic aspects of the local case: when the volume of the subset
A ⊂ [0,1]3 = I 3 is very small. So small that the expected number of point-billiards in A ⊂
[0,1]3 is just a constant, or it tends to infinity very slowly compared to the number of points
N as N → ∞. But what happens in the global case when vol(A) jumps up from O(1/N)

to the constant range such as (say) 1/10 < vol(A) < 9/10? That is, what happens when the
expected number of point-billiards in A is as large as constant times N?

Well, then the vague intuition in (2.2) has the form

Kronecker–Weyl theorem =⇒ weak independence =⇒ central limit theorem,

which makes it plausible to guess that perhaps the time-evolution of the point-counting
function

YA(t) =
∑

1≤j≤N :
xj (t)∈A

1 (3.1)



176 J. Beck

satisfies a central limit theorem. This leads to the following natural question: Is it true that
the local Theorem 1 generalizes to a global central limit theorem?

What I can prove is a global central limit theorem for the time-evolution of the point-
counting function in “nice” sets A ⊂ [0,1]3. (Here “nice” means, e.g., the family of axes-
parallel boxes, or the family of solid spheres, or even the large class of all convex sets.)
However, in the general case of an arbitrary Lebesgue measurable subset A ⊂ [0,1]3 we
cannot expect a global central limit theorem; I will explain this unexpected fact below. In
the general case I can only prove some weaker results: namely some analogs of the law of
large numbers; see the second half of this section.

Basic Intuition in the Global Case If A ⊂ [0,1]3 is a “large” measurable subset with, say,
1/10 < vol(A) < 9/10, then the time-evolution 0 < t < T of the point-counting function
YA(ω; t) (see (3.1)), where

ω = (xj (0), ẋj (0) : 1 ≤ j ≤ N)

is a fixed typical initial condition, can be well approximated by a sum of independent and
identically distributed random variables

YA(ω; t) ≈ ξ1 + ξ2 + · · · + ξN (3.2)

with Pr[ξj = 1] = vol(A) = p, Pr[ξj = 0] = 1 − vol(A) = 1 − p = q , 1 ≤ j ≤ N .
Note in advance that the proof of Theorem 1—a local Poisson limit theorem—can be

briefly summarized as follows: it is a repeated application of the second moment method to
the sequence of sets A, A × A, A × A × A, . . . (Cartesian products in higher and higher
dimensional spaces). The restriction to the second moment method explains why we are
able to stay/work in the L2 space, and can prove the general Theorem 1 about arbitrary
measurable subsets A.

Central Limit Theorem: Why “Nice” Sets? The proof of a global central limit theorem for
the time-evolution of the point-counting function inevitably leads to a study of the higher
moments, and it requires the convergence of numerical series such as (say)

∑

r1+r2+r3+r4+r5+r6=0

|ar1ar2ar3ar4ar5ar6 |
|r1| + |r2| + |r3| + |r4| + |r5| + |r6| , (3.3)

where ar is the Fourier coefficient of the 0-1-valued characteristic function χA of the set
A ⊂ I 3 = [0,1)3:

χA(w) =
∑

r∈Z3

are
2π ir·w with ar =

∫

A

e−2π ir·z dz. (3.4)

Note that r · w = r1w1 + r2w2 + r3w3 denotes the usual inner product of vectors, and we
have

a−r = ar,

where “overline” denotes the complex conjugates. Clearly a0 = vol(A) (= the volume of
A), and by Parseval’s formula,

∑

r∈Z3

|ar|2 =
∫

I3
χ2

A(w) dw = vol(A). (3.5)
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But just because
∑

r∈Z3

|ar|2 < ∞ (3.6)

(note that, by the Riesz–Fisher theorem, the L2-space is characterized by (3.6)), the conver-
gence in (3.6) does not guarantee the convergence in (3.3).

As an illustration, consider the one-dimensional sequence

a−n = an = 1√
n log(n + 1)

, n = 1,2,3, . . . . (3.7)

Clearly

∑

r �=0

a2
r = 2

∞∑

n=1

1

n log2(n + 1)
< ∞. (3.8)

On the other hand, the analog of (3.3)

∑

r1+r2+r3+r4+r5+r6=0:rj �=0

ar1ar2ar3ar4ar5ar6

|r1| + |r2| + |r3| + |r4| + |r5| + |r6| (3.9)

is a divergent series. Indeed, for any 5-tuple (r1, r2, r3, r4, r5) with N ≤ r1, . . . , r5 ≤ 2N there
is a unique r6 in the interval −10N ≤ r6 ≤ −5N such that r1 + r2 + r3 + r4 + r5 + r6 = 0,
and the corresponding contribution in the sum (3.9) is

≥ N5

(
√

10N log(10N + 1))6 · 20N
≥ const · N

log6 N
,

which tends to infinity as N → ∞.
Next I explain how the proof of a global central limit theorem inevitably leads to the

convergence of sum (3.3) (and to the convergence of some even more complicated sums),
demanding that the Fourier coefficients ar of the characteristic function χA of the set A ⊂
I 3 = [0,1)3 (see (3.4)) must tend to zero “rapidly”—a property that is satisfied only by
“nice” sets A ⊂ [0,1)3. Of course, I have to tell what “rapidly” and “nice” actually mean.

According to the Basic Intuition in (3.2), for a typical initial condition

ω = (xj (0), ẋj (0) : 1 ≤ j ≤ N)

“the third central moment is very close to o(N3/2)”, that is,

1

T

∫ T

0
(YA(ω; t) − Np)3 dt ≈ o(N3/2), (3.10)

assuming T is large. (We could also work with the mth moment for any integer m ≥ 3.)
To justify (3.10), I recall that we have N non-interacting billiard balls, each represented

by a point mass, which move freely inside the unit cube I 3 = [0,1]3 such that the reflection
off the wall (= side of the cube) is elastic. The trajectory of the j th billiard ball (= point)
in the time interval 0 ≤ t ≤ T is described by xj (t) = (xj,1(t), xj,2(t), xj,3(t)); xj (0) = yj is
the initial position, ẋj (0) = v · uj is the initial velocity and v > 0 is the common speed (uj

is a unit vector, i.e., uj ∈ S2 = unit sphere).
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In view of the geometric trick of unfolding the billiard paths to straight lines in the 3-
space, it suffices to deal with N torus lines xk(t) = (xk,1(t), xk,2(t), xk,3(t)) (mod 1), k =
1,2, . . . ,N where

xk,1(t) = uk,1tv + yk,1, xk,2(t) = uk,2tv + yk,2, xk,3(t) = uk,3tv + yk,3 (3.11)

and

u2
k,1 + u2

k,2 + u2
k,3 = 1, (3.12)

i.e., uk = (uk,1, uk,2, uk,3) is a unit vector. Since v ≥ 1 is the common speed of the particles,
the length of the straight line segment xk(t), 0 < t < T is clearly vT . The pair

(xk(0), ẋk(0)) = (yk, vuk)

is the initial condition of the kth torus-line xk(t). We use the short notation ω for the initial
condition of the whole system.

Let A ⊂ I 3 = [0,1)3 be an arbitrary Lebesgue measurable subset. The trick of unfolding
means that we consider the union of 8 copies of A, and then we shrink the corresponding 2×
2 × 2 cube to the unit cube; the resulted set is also denoted—for notational convenience—
by A.

By applying the Fourier series (3.4), we have (p = vol(A) = a0)

YA(ω; t) − Np =
N∑

k=1

χA(xk(t)) =
N∑

k=1

∑

r∈Z
3:

r �=0

are
2π ir·xk(t)

=
∑

r∈Z
3:

r �=0

N∑

k=1

are
2π ir·yk · e2π i(r·uk)vt . (3.13)

Thus by (3.13) we have (we break the long expression below into two lines)

1

T

∫ T

0
(YA(ω; t) − Np)3 dt

=
∑

r1∈Z
3:

r1 �=0

∑

r2∈Z
3:

r2 �=0

∑

r3∈Z
3:

r3 �=0

ar1ar2ar3

N∑

j1=1

N∑

j2=1

N∑

j3=1

e2π i(r1·yj1 +r2·yj2 +r3·yj3 )

· 1

T

∫ T

0
e2π i(r1·uj1 +r2·uj2 +r3·uj3 )vt dt

=
∑

r1∈Z
3:

r1 �=0

∑

r2∈Z
3:

r2 �=0

∑

r3∈Z
3:

r3 �=0

ar1ar2ar3

N∑

j1=1

N∑

j2=1

N∑

j3=1

e2π i(r1·yj1 +r2·yj2 +r3·yj3 )

· e2π i(r1·uj1 +r2·uj2 +r3·uj3 )vT − 1

2π i(r1 · uj1 + r2 · uj2 + r3 · uj3)vT

=
∑

1
(ω). (3.14)
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To justify (3.10), we compute the quadratic average of
∑

1(ω) (see (3.14)) over all ini-
tial conditions ω (the common speed v remains fixed): we want to show that the quadratic
average is o(N3). First we keep the unit vectors (initial directions) u1,u2, . . . ,uN ∈ S2

fixed, and evaluate the square integral
∑

2 below by integrating over the initial positions
y1,y2, . . . ,yN ∈ I 3 = [0,1)3:

∑

2
(u1, . . . ,uN) =

∫

I3
· · ·

∫

I3

(∑

1
(ω)

)2
dy1 · · ·dyN . (3.15)

By definition,
∑

2
(u1, . . . ,uN)

=
∑

rm∈Z
3:

rm �=0, 1≤m≤6

∑

1≤jm≤N :
1≤m≤6

ar1ar2ar3ar4ar5ar6

e2π i(r1·uj1 +r2·uj2 +r3·uj3 )vT − 1

2π i(r1 · uj1 + r2 · uj2 + r3 · uj3)vT

· e2π i(r4·uj4 +r5·uj5 +r6·uj6 )vT − 1

2π i(r4 · uj4 + r5 · uj5 + r6 · uj6)vT

·
∫

I3
· · ·

∫

I3
e2π i(r1·yj1 +r2·yj2 +r3·yj3 +r4·yj4 +r5·yj5 +r6·yj6 ) dy1 · · ·dyN . (3.16)

Due to the last integral, the nonzero contribution in
∑

2 (see (3.16)) comes from the terms
with the property that in the sum

r1 · yj1 + r2 · yj2 + r3 · yj3 + r4 · yj4 + r5 · yj5 + r6 · yj6

every yj has zero coefficient. There are a few such cases; one of them is the following:

Case A: j1 = j2 = j3 = j4 = j5 = j6 and r1 + r2 + r3 + r4 + r5 + r6 = 0

Using Case A in (3.16), we have
∑

2
(u1, . . . ,uN)

=
∑

(r1,...,r6,j):
r1,...,r6∈Z

3\0, 1≤j≤N
r1+···+r6=0

ar1 · · ·ar6

∣
∣
∣
∣

e2π i(r1+r2+r3)·uj vT − 1

2π(r1 + r2 + r3) · uj vT

∣
∣
∣
∣

2

+ · · · (3.17)

where the · · · at the end of (3.17) indicates that there are a few more cases beyond Case A.
If r ∈ Z

3 \ 0 and τ ≥ 1 is an arbitrary constant, then a simple calculation gives

∫

S2

∣
∣
∣
∣
e2π ir·uτ − 1

2πr · uτ

∣
∣
∣
∣

2

du = const

|r|τ . (3.18)

I will show a detailed proof of (3.18) later; see (5.15).
Next we integrate

∑
2 over the direction vectors uk ∈ S2, k = 1,2, . . . ,N , and apply

(3.18) with τ = vT ; this leads us to the following (in order to normalize, we have to divide
by 4π , which is the surface area of the unit sphere S2):

∑

3
= 1

4π

∫

S2
. . .

1

4π

∫

S2

∑

2
(u1, . . . ,uN)du1 . . . duN
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= N
∑

(r1,...,r6):
r1,...,r6∈Z

3\0
r1+r2+r3=−(r4+r5+r6)�=0

ar1 · · ·ar6 · const

|r1 + r2 + r3|vT
+ · · · (3.19)

where again the · · · at the end of (3.18) indicates that there are some extra terms that I
skipped.

In view of (3.19), it is perfectly reasonable to assume the convergence of the series

∑

(r1,...,r6):
r1,...,r6∈Z

3\0
r1+r2+r3=−(r4+r5+r6)�=0

|ar1ar2ar3ar4ar5ar6 |
|r1 + r2 + r3| < ∞, (3.20)

since otherwise we don’t have a chance to prove
∑

3 = o(N3), which is “basically” equiva-
lent to (3.10). Since (3.20) implies the convergence of the numerical series in (3.3), now we
see why the proof of a global central limit theorem “inevitably requires” the convergence of
sum (3.3).

To guarantee (3.3) (or (3.20)), we certainly need some extra condition of the type “ar

tends to zero rapidly as |r| → ∞” (besides the Parseval formula
∑

r |ar|2 < ∞ which always
holds). Note that the classes of axes-parallel boxes, or solid spheres, or even the large class of
convex sets, all satisfy this “rapid decreasing of the Fourier coefficients ar” type condition.

How to prove a global central limit theorem for these “nice” sets? The basic idea is to
apply the “moment method”. To explain this, I recall the Basic Intuition in the global case
(see (3.2)): if A ⊂ [0,1]3 is a “large” measurable subset with, say, 1/10 < vol(A) < 9/10,
then the time-evolution 0 < t < T of the point-counting function YA(ω; t) (see (3.1)), where
ω is a fixed typical initial condition, can be well approximated by a sum of independent and
identically distributed random variables

YA(ω; t) ≈ ξ1 + ξ2 + · · · + ξN (3.21)

with Pr[ξj = 1] = vol(A) = p, Pr[ξj = 0] = 1 − vol(A) = 1 − p = q , 1 ≤ j ≤ N . The sum
ξ1 + ξ2 +· · ·+ ξN in (3.21) has the binomial distribution B(N,p) with parameters N (“large
integer”) and p (“probability”):

Pr [ξ1 + ξ2 + · · · + ξN = k] =
(

N

k

)

pkqN−k, 0 ≤ k ≤ N. (3.22)

To prove a global central limit theorem for the time-evolution, we compare the higher mo-
ments: we will show that the mth central moment σ ∗

m

σ ∗
m = σ ∗

m(N,p) = E

⎛

⎝
N∑

j=1

(ξj − p)

⎞

⎠

m

(3.23)

of the binomial distribution B(N,p) is “very close” to the integral

σm(ω) = σm(ω;T ;N,p) = 1

T

∫ T

0
(YA(ω; t) − Np)m dt (3.24)

for the overwhelming majority of the initial conditions ω. Here m = 1,2,3, . . . , and we
assume that N and T are both “large”. The basic idea is simple, but the execution requires
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long and delicate calculations, so I stop here. This paper is already far too long; I postpone
the “global central limit theorem for the time-evolution of the point-counting function in
nice sets” to another paper.

What I will prove here is a simpler and weaker result: a global analog of the law of large
numbers (with much shorter proof).

3.2 The “Density” Is Constant

The “global case” means that vol(A) is in the constant range such as (say) vol(A) = 1/3 or
vol(A) = 2/3. So what happens when the expected number of point-billiards in A is as large
as constant times N? The time-evolution of the point-counting function exhibits a weak
analog of the law of large numbers.

Theorem 2 Similarly to Theorem 1, assume that N non-interacting point-billiards move
freely inside the unit cube I 3 = [0,1]3 such that the reflection off the wall (= side of the cube)
is elastic. Let xj (t) = (xj,1(t), xj,2(t), xj,3(t)) describe the trajectory of the j th billiard ball
(= point) in the time interval 0 ≤ t ≤ T , where xj (0) = yj is the initial position, ẋj (0) =
v · uj is the initial velocity and v > 0 is the common speed.

Let A ⊂ [0,1]3 be an arbitrary Lebesgue measurable subset of the unit cube with volume
0 < vol(A) < 1, and let YA(t) denote the point-counting function:

YA(t) =
∑

1≤j≤N :
xj (t)∈A

1.

Let 0 < ε < 1 and 0 < η < 1. Then for more than 1 − ε part of the initial conditions

ω = (y1, . . . ,yN,u1, . . . ,uN) ∈ (
I 3
)N × (

S2
)N = �

(in the sense of the product measure on �), the point-counting function YA(ω; t) is very
close to the “expectation” N · vol(A) in the sense that

1

T
measure{0 ≤ t ≤ T : |YA(ω; t) − N · vol(A)| > η · N · vol(A)}

<
2
√

3√
εη2

√
N · vol(A)

(
2

vT
+ 1

vT N · vol(A)
+ 2

vT (N · vol(A))2
+ 8

N · vol(A)

)1/2

.

Remarks (1) I note without proof that one can easily prove a simultanous version of The-
orem 2 (like how (1.11) is a simultanous version of (1.10)), and also one can easily prove
sequential versions, such as (b) and (c) in the Remarks after Theorem 1.

(2) Again the main point is that Theorem 2 holds for arbitrary measurable sets A in the
unit cube.

(3) Theorem 2 is the most effective if N · vol(A) is “large”, and the estimation becomes
useless if N · vol(A) is in the constant range. But this is perfectly natural, since N · vol(A)

is the average number of point-particles in subset A, and of course the law of large numbers
fails to work for “small numbers”, i.e., when N · vol(A) is in the constant range.

(4) An illustration of Theorem 2. The following example is motivated by the kinetic
theory of gases. Suppose that the unit cube [0,1]3 represents a cube-shaped container of side
1 meter, N = 1027 (roughly the number of gas molecules), v = 103 meter per second (typical
speed of a gas molecule in room temperature), T = hundred years = 100 · 365 · 24 · 60 · 60 ≈
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3 · 109 seconds, ε = 10−4, A ⊂ [0,1]3 is an arbitrarily complicated (but measurable) subset
with vol(A) = 1/2, and η = 10−3.

In this special case, Theorem 2 gives the following information. Consider a long time
interval of 100 years: for more than 99.99 percent of the initial conditions ω ∈ �, the number
of particles YA(ω; t) in the given subset A ⊂ [0,1]3 of volume 1/2 stays very close to the
expected number N/2 in the quantitative sense that the deviation from N/2 is less than
one-tenth of a percent except possibly for a set of time-points t with total time less than 10
seconds!

Well, 10 seconds is a remarkably short time compared to 100 years. The message of this
striking result is that in the deterministic Bernoulli model the “density” is constant (which
easily yields that the “pressure” is also constant).

The proof of Theorem 2 is postponed to Sect. 8.

3.3 Quick Evolution from Extremely Jammed Start to Uniform Distribution: Theorem 3

Just like in Theorems 1 and 2, we study the time evolution of an ideal gas of N molecules—
represented by N point-billiards—in a cube-shaped container that we identify with the unit
cube I 3 = [0,1]3, but we have a novelty: the initial position of the system is extremely non-
uniform. More precisely, assume that at t = 0 the N point-billiards are all concentrated in
the first octant [0,1/2]3 of the unit cube. Of course, instead of [0,1/2] we could choose
(say) [0,1/3] or [0,1/4]; it doesn’t really make any difference in the proof below. Note that
the event “the system of N point-particles is concentrated in the first octant” has probability
8−N , which is inconceivably small if N is in the range of the Avogadro number N ≈ 1024.

What we are interested in is the following question: How long does it take for the system,
starting from this extremely “jammed” position (i.e., where all points are in the first octant),
to achieve uniformity in the whole unit cube?

We test uniformity in the following way. Let A ⊂ [0,1]3 be an arbitrary Lebesgue mea-
surable subset of the unit cube with volume 0 < vol(A) < 1, and let YA(t) denote the point-
counting function:

YA(t) =
∑

1≤j≤N :
xj (t)∈A

1,

where, as usual, xj (t) = (xj,1(t), xj,2(t), xj,3(t)) describes the trajectory of the j th point-
billiard in the time interval 0 ≤ t ≤ T , where xj (0) = yj is the initial position, ẋj (0) = v · uj

is the initial velocity and v > 0 is the common speed of the point-billiards. What we want
is that, for some “large” T , the overwhelming majority of the time-points t in 0 < t < T

exhibit uniformity in the sense

YA(t) = N · vol(A) + negligible error. (3.25)

What is the shortest time-interval T for which we can guarantee (3.25)? Our goal here is to
discuss this question.

Theorem 3 Similarly to Theorems 1 and 2, assume that N non-interacting point-billiards
move freely inside the unit cube I 3 = [0,1]3 such that the reflection off the wall (= side
of the cube) is elastic. Let xj (t) = (xj,1(t), xj,2(t), xj,3(t)) describe the trajectory of the j th
billiard ball (= point) in the time interval 0 ≤ t ≤ T , where xj (0) = yj is the initial position,
ẋj (0) = v · uj is the initial velocity and v > 0 is the common speed.
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Assume that the initial position of the system is concentrated in the first octant [0,1/2]3

of the unit cube (= container), that is, the initial condition ω satisfies

ω = (y1, . . . ,yN,u1, . . . ,uN) ∈ ([0,1/2]3
)N × (

S2
)N = �̃.

Let A ⊂ [0,1]3 be an arbitrary Lebesgue measurable subset of the unit cube with volume
0 < vol(A) < 1, and let YA(t) denote the point-counting function:

YA(t) =
∑

1≤j≤N :
xj (t)∈A

1.

Then the L2-norm of the discrepancy of the point-counting function YA(ω; t) from its
“expectation” N · vol(A) is estimated from above as follows:

(
2

π

)N ∫

�̃

(
1

T

∫ T

0

(
YA(ω; t) − N · vol(A)

N

)2

dt

)2

dω

≤ 3 · 104 · vol2(A)

(
log(vT )

vT

)2

+ 12 · 102 · vol3(A)

(
log(vT )

vT

)2

+ 4 · 104 · vol3(A)

vT N
+ 32 · 1013 · vol2(A)

vT N
+ 24 · 108 · vol2(A)

vT N2
+ 3

N2
. (3.26)

Remarks At first sight the upper bound (2.2) seems very complicated, but it is in fact
simpler than it looks, since the terms with N in the denominator are usually negligible.

If the square-integral

(
2

π

)N ∫

�̃

(
1

T

∫ T

0

(
YA(ω; t) − N · vol(A)

N

)2

dt

)2

dω

is “small” for an arbitrary Lebesgue-measurable subset A ⊂ [0,1]3 of the unit cube, then
we can intuitively say that, the distribution of a typical system of N point-billiards with
an extremely jammed start evolves to globally uniform in time T . How long does it take
to achieve uniformity? The following example is motivated by the kinetic theory of gases.
Suppose that the unit cube [0,1]3 represents a cube-shaped container of side 1 meter, N =
1027 (roughly the number of gas molecules), v = 103 meter per second (typical speed of a gas
molecule in room temperature), A ⊂ [0,1]3 is an arbitrarily complicated (but measurable)
subset with vol(A) = 1/2, and let T = 10 seconds. By evaluating the right hand side of
(2.2), we obtain the upper bound

(
2

π

)N ∫

�̃

(
1

T

∫ T

0

(
YA(ω; t) − N · vol(A)

N

)2

dt

)2

dω <
1

100
,

which is “small”. We can say, therefore, that during the relatively short time-interval of 10
seconds the system evolves from extremely jammed to uniformly distributed—at least this
is the typical behavior.

What is more, as the time goes by, the system becomes more and more uniform—this is
the message of Theorem 3; see the asymptotic behavior of the right hand side of (3.26) as
T → ∞.
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My (complicated) estimation in (3.26) is certainly not optimal: I am convinced that in
reality the system in the example above achieves uniformity in a fraction of a second.

The proof of Theorem 3, similarly to Theorem 2, is postponed to Sect. 8. Both proofs are
based on a second moment argument.

4 Super-uniformity of the Typical Billiard Path

4.1 What is Super-uniformity?

This section is a detour: I discuss a surprising byproduct of my research in deterministic ki-
netic theory of gases. By using the basic technique of this paper—Fourier analysis—I show
that the typical billiard paths in a square (or any rectangle) are extremely uniform far beyond
“common sense”. What most experts would consider a “common sense expectation” is the
square-root size (“random”) error; what we can prove is the much smaller square-root log-
arithm(!). Since square-root logarithm is “almost” constant, our upper bound is essentially
independent of the complexity of the test set. We can say, therefore, that (roughly speaking)
“the ugliness of the test set is irrelevant”. Or we can say that the set of typical billiard paths
represents the family of most uniformly distributed curves in the square. Theorem 4 below
makes these vague statements precise.

More precisely, we study the trajectory of a single point-billiard, and for simplicity we
restrict ourselves to the unit square (2-dimensional case). We want to compare the actual
time—i.e., the time the point-billiard spends in a given (measurable) subset A of the unit
square—to the expected time. The expected time is area(A) times the total time, which re-
flects “perfect uniformity” (we assume that the speed is one).

In view of the trick of unfolding the billiard path to a straight line in the plane (explained
in Sect. 1), it suffices to deal with torus-lines (of course we shrink the corresponding 2 × 2
square to the unit square). Let A ⊂ I 2 = [0,1)2 be an arbitrary Lebesgue measurable subset
(via unfolding it corresponds to the union of four copies of the given test-set), and consider
the torus-line x(t) = (x1(t), x2(t)) (mod 1) where

x1(t) = α1t + y1, x2(t) = α2t + y2 and α2
1 + α2

2 = 1. (4.1)

The second part of (4.1) means that the speed is one, so the length of the straight line seg-
ment x(t), 0 < t < T is clearly T , i.e., time = arc-length. The initial condition (y, (α1, α2))

describes the starting point y ∈ [0,1)2 and the angle (by the point (α1, α2) on the unit circle)
of the torus-line x(t). Let A(T ) = A(T ;y, (α1, α2)) denote the total time the torus-line x(t)

(defined in (4.1)) spends in subset A during the given time interval 0 < t < T . That is,

A(T ;y, (α1, α2)) = actual time, and area(A) · T = expected time,

and we want to compare the two.
I begin with the continuous form of the Kronecker–Weyl equidistribution theorem.

Theorem (Continuous Kronecker–Weyl) If the slope α2/α1 is irrational, then for every
starting point y ∈ [0,1)2,

lim
T →∞

A(T ;y, (α1, α2))

T
= area(A) (4.2)

for all Jordan measurable sets A ⊂ [0,1)2.
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Note that a set in a euclidean space is Jordan measurable if and only if the characteristic
function χA of the set is Riemann integrable.

The billiard path (4.1) has 2-dimensional Lebesgue measure zero, so (4.2) cannot be true
for all Lebesgue measurable sets A ⊂ [0,1)2. However, by involving the ergodic theorem,
we can formulate a result, similar to (4.2), which holds for every Lebesgue measurable set
A ⊂ [0,1)2. First we have to define a dynamical system: for every real t we define the map

�t : y → y + t (α1, α2) (mod 1). (4.3)

Clearly �t is a mapping of the unit square y ∈ [0,1)2 into itself, and �t preserves the
Lebesgue measure (“area”). Since �t(x(0)) = x(t) (see (4.1)), it is customary to call �t the
“time-shift”. The quadruplet

([0,1)2, L, λ,�t

)
, (4.4)

where L denotes the σ -algebra of all Lebesgue measurable sets A ⊂ [0,1)2 and λ is the
2-dimensional Lebesgue measure, is an ergodic dynamical system if the slope α2/α1 is irra-
tional. Note that ergodicity follows from (4.2).

Next we apply Birkhoff’s ergodic theorem: it states that, given any Lebesgue measurable
set A ⊂ [0,1)2, for almost every starting point y ∈ [0,1)2,

lim
T →∞

A(T ;y, (α1, α2))

T
= area(A) = λ(A). (4.5)

Since the classes of Jordan and Lebesgue measurable sets are both very large, and contain
arbitrarily “ugly” (= complicated) sets A ⊂ [0,1)2, it is not too surprising that neither the
continuous Kronecker–Weyl Theorem (4.2), nor the ergodic Theorem (4.5) can say anything
about the speed of convergence. In both cases (4.2) and (4.5),

|A(T ;y, (α1, α2)) − area(A) · T | = o(T ), (4.6)

but we know nothing beyond that.
However, if we replace “every irrational (= ergodic) slope” with “almost every slope”,

then we can upgrade the weak (4.6) to a shockingly strong upper bound for the discrepancy:

|A(T ;y, (α1, α2)) − area(A) · T | = O
(√

logT
)

. (4.7)

Theorem 4 below is exactly an explicit/precise version of (4.7).
Throughout logx and log2 x stand for the natural (i.e., base e) and the binary (i.e., base 2)

logarithms (I don’t use ln at all).

Theorem 4 Let A be an arbitrary Lebesgue measurable subset of the unit square [0,1)2

with two-dimensional Lebesgue measure area(A), and let T > 100 be an arbitrarily large
(but fixed) real number. Let x(t) = (x1(t), x2(t)), 0 ≤ t ≤ T be a billiard path of length T

(= time) in the unit square, and let A(T ) denote the time the billiard path spends in subset A:

A(T ) = measure {t ∈ [0, T ] : x(t) ∈ A} .

Let 0 < ε < 1/2 be arbitrary. Then for 1 − ε part of all billiard paths of length T in the
square,

|A(T ) − T · area(A)| < 10

ε

√
area(A)(1 − area(A)) ·√log2 T · log2 log2 T . (4.8)
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4.2 Remarks

(1) It is astonishing that, given an arbitrarily complicated subset A ⊂ [0,1)2, the discrepancy
in (4.8) is just square-root logarithmic, that is, “almost constant” (the “ugliness” of A plays
no role in (4.8)). On the other hand, if Theorem 4 is restricted to extremely “nice” subsets,
say to the narrow family of axis-parallel subsquares, then constant discrepancy O(1) in (4.8)
is still unavoidable (to be explained below). In other words, in Theorem 4 the “ugliness”
(= complexity) of the test set A ⊂ [0,1)2 is basically irrelevant! We can summarize the
message in the following statement: the most uniformly distributed curves in the unit square
are the typical billiard paths. Perhaps the greatest surprise here is that such a vague question
has a definite quantitative answer.

(2) As I promised, I explain the almost trivial fact that even for the narrow class of axis-
parallel subsquares we must have constant discrepancy O(1) in (4.8). Consider the two
subsquares A1 = [0,1/3]2 and A2 = [2/3,1]2 that are “far” from each other; the distance
between them is

√
2/3. Let x(t) be an arbitrary continuous curve in the unit square; we

always assume that the arc-length of every segment x(t), T1 < t < T2 is exactly T2 − T1

(meaning: t is the time and a point-mass moves along the curve with unit speed). For any
real number τ > 0 write

Ai(τ ) = measure {t ∈ [0, τ ] : x(t) ∈ Ai} , i = 1,2

where Ai , i = 1,2 are the two subsquares mentioned above. We show that the following
four discrepancies:

|Ai(T ) − T · area(Ai)|, |Ai(T + c) − (T + c) · area(Ai)|, i = 1,2, (4.9)

where c = √
2/3 is the distance between the two given subsquares A1 and A2 (computed for

the same curve!), cannot be all o(1). Indeed, the middle segment x(t), T < t < T + c of the
curve cannot visit both subsquares (because the arc-length is exactly the distance between
A1 and A2); consequently, at least one of the four discrepancies in (4.9) must be

≥ 1

2
c · area(Ai) = 1

2
·
√

2

3
· 1

9
=

√
2

54
.

This proves that in Theorem 4 we cannot hope for discrepancy o(1) in (4.8) even for the
simplest families of subsets.

(3) The vague term of “typical billiard path” in Theorem 4 can be made precise in the
usual way: by defining a measure on the set of all initial conditions of the billiard paths. Since
the initial condition consists of a starting point y ∈ [0,1)2 and an initial direction (angle) θ ∈
[0,2π), the corresponding measure is simply the product of the two-dimensional Lebesgue
measure on the unit square and the normalized one-dimensional Lebesgue measure.

(4) Theorem 4 gives an interesting new insight to the general question of discrete versus
continuous. The Kronecker–Weyl equidistribution theorem has two forms: a discrete form
and a continuous form.

Theorem (Kronecker–Weyl Theorem (discrete)) Let d ≥ 1 be any integer, and let a =
(α1, . . . , αd) be an arbitrary d-dimensional vector with real coordinates. The sequence na
(mod 1), n = 1,2,3, . . . is uniformly distributed in the unit cube [0,1)d , meaning

lim
N→∞

1

N

∑

1≤n≤N :
na∈R (mod 1)

1 = volume(R)
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for any rectangular box R = I1 × · · · × Id ⊂ [0,1)d (i.e., Cartesian product of intervals) if
and only if 1, α1, . . . , αd are linearly independent over the rationals.

Theorem (Kronecker–Weyl Theorem (continuous)) We have

lim
T →∞

1

T
measure{0 < t < T : ta ∈ R (mod 1)} = volume(R)

for any rectangular box R = I1 × · · · × Id ⊂ [0,1)d if and only if α1, . . . , αd are linearly
independent over the rationals.

(Note that the continuous form was already mentioned in (2.1) and in (4.2).) These two
forms show that the discrete sequence

na (mod 1), n = 1,2,3, . . . (4.10)

and the continuous torus line passing through the origin

ta (mod 1), 0 < t < ∞ (4.11)

have the same equidistribution property—at least from a qualitative viewpoint. (Also, the
two versions have almost identical proofs based on the famous Weyl’s Criterion.)

The surprising message of Theorem 4 is that, in spite of these similarities, the quantita-
tive aspects of (4.10) and (4.11) are very different. Indeed, Theorem 4 states that a typical
billiard path—which is just a general torus line ta + b (mod 1) 0 < t < ∞ via unfolding—
estimates the area of an arbitrary but fixed (measurable) subset A ⊂ [0,1]2 with “error”
(= discrepancy) O(

√
logT ), where T is the length of the time-interval. On the other hand, a

typical discrete sequence of the form (which is the discrete version of the general torus line
ta + b in dimension d = 1)

nα + β (mod 1), n = 1,2, . . . ,N

cannot estimate the one-dimensional Lebesgue measure of an arbitrary but fixed A ⊂ [0,1]
with “error” o(

√
N). This is the message of the following result.

Proposition 4.1 For every integer N ≥ 1, there is a measurable subset A = AN ⊂ [0,1] (in
fact, A is a finite union of intervals) of measure 1/2 such that, for the majority of the pairs
(α,β) ∈ [0,1)2,

∣
∣
∣
∣

∑

1≤n≤N :
nα+β∈A (mod 1)

1 − N · measure(A)

∣
∣
∣
∣>

√
N

5
. (4.12)

Note without proof that Proposition 4.1 is best possible: the error term
√

N in (4.12)
cannot be replaced by any larger function of N .

Comparing Theorem 4 to Proposition 4.1, we see a huge difference between the sizes of
the “errors”

√
logT and

√
N

(for simplicity I ignored the negligible iterated logarithmic factor of T ). This shows that the
quantitative aspects of (4.10) and (4.11) are dramatically different, and explains why I used
the strong term super-uniformity in the title of this section.
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(5) We can view Theorem 4 and Proposition 4.1 as the starting points of a new direction in
the study of the classical subject of uniform distribution. There are many natural questions
here, which are worth while pursuing. I just mention a few: What happens in dimensions

d ≥ 3? (I mention without proof that the curve-discrepancy < T
1
2 − 1

2(d−1) ; here for simplicity
I ignored the logarithmic factors.) Another question: estimating the volume and integral with
point sampling, which one is better: regular sampling or random sampling (= Monte Carlo
method)? Can we “beat” the Monte Carlo method?

Since this paper is already far too long, I will address these exciting questions in another
paper. Here I just briefly mention one more related result without proof. The huge difference
between the sizes of the “errors”

√
N and

√
logT

in Proposition 4.1 and Theorem 4 does not stop in dimension two: if we “increase both
dimensions by one”, the “error” becomes constant(!), which is clearly best possible. The
term “increase both dimensions by one” means that we replace the torus line-segment x(t)

(mod 1), 0 < t < T , where x(t) = (x1(t), x2(t)),

x1(t) = α1t + y1, x2(t) = α2t + y2,

with the torus-parallelogram x(t1, t2) (mod 1), 0 < t1 < T1, 0 < t2 < T2, where x(t1, t2) =
(x1(t1, t2), x2(t1, t2), x3(t1, t2)) ∈ R

3 and

x1(t1, t2) = α1,1t1 + α1,2t2 + y1, x2(t1, t2) = α2,1t1 + α2,2t2 + y2,

x3(t1, t2) = α3,1t1 + α3,2t2 + y3.

A typical torus-parallelogram (with respect to an arbitrary 3-dimensional subset of the unit
cube) is even more uniform than a typical torus line-segment (with respect to an arbitrary 2-
dimensional subset in the unit square): the “error” (= discrepancy) becomes bounded—less
than an absolute constant (independent of the values of T1, T2)—which is of course smaller
than the

√
logT in Theorem 4 (which tends to infinity, though very slowly, as T → ∞).

(6) A novel application to volume computation. The message of Theorem 4 in a nutshell
is that the “ugliness” of the subset is irrelevant, and the error term is shockingly small.
Shortly speaking: line sampling is much more efficient than the traditional point sampling!
Note that basically the same “almost constant discrepancy” result holds in the 3-dimensional
space for convex sets. This motivates the following completely new way of computing, or
rather approximating, the volume of 3-dimensional convex sets (= solids). Convex sets are
special in the sense that the intersection with a (straight) line is a line segment (so its length
is determined by the two endpoints).

For simplicity, assume that A is a convex subset of the unit cube [0,1]3; we want to ap-
proximate the volume vol(A). First we extend the subset A ⊂ [0,1]3 periodically over the
whole 3-space (of course, the period is 1 in each of the three coordinate directions). Then we
choose a “typical” straight line segment of length n in the 3-space (n is “large”). It means,
more precisely, that first we choose a starting point y in (say) the unit cube [0,1]3, and then
we choose a direction u, represented by a point on the unit sphere S2. The starting point
y ∈ [0,1]3, the direction u ∈ S2, and the length n uniquely determine a straight line segment
L(n) = L(y;u;n) in the ordinary 3-space. We consider the intersection of the line segment
L(n) = L(y;u;n) with the periodic extension of A ⊂ [0,1]3 over the whole 3-space: it con-
sists of O(n) “pieces”, where each “piece” is a line segment itself. For notational simplicity,
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let total[L(n) ∩ A] denote the total length of the O(n) “pieces”. The mathematical theorem
mentioned above states that, for the overwhelming majority of the initial conditions (ini-
tial condition = starting point y ∈ [0,1]3 and direction u ∈ S2 together), total[L(n) ∩ A] is
shockingly close to the “expected value” n · vol(A): the discrepancy

|total[L(n) ∩ A] − n · vol(A)|
is negligible, and the “ugliness” of the convex set A ⊂ [0,1]3 is irrelevant.

The obvious benefit of working with a convex set A ⊂ [0,1]3 is that the total length of the
O(n) “pieces” total[L(n)∩A] can be easily computed. Indeed, each piece is a line segment
itself, so we just need to know the coordinates of the two endpoints: the distance comes from
a straightforward application of Pythagorean theorem. Finally, we just add up the O(n)

distances. It is relatively easy, therefore, to determine the exact value of total[L(n) ∩ A],
which happens to be very close to n times the volume vol(A). Dividing by n, we obtain a
very good approximation of the volume of the convex set A ⊂ [0,1]3.

It is an important technical question how to actually determine the two endpoints of
a “piece” (= short line segment). The answer heavily depends on the way the convex set
A ⊂ [0,1]3 is described. A typical way to describe a complicated convex set is to represent
it as the intersection of a few simpler convex sets. As an illustration, consider the case
when A ⊂ [0,1]3 is the intersection of a ball B , a cube C, and a tetrahedron D: A = B ∩
C ∩ D. Of course, the volumes vol(B), vol(C), vol(D) are easy to be computed, but the
volume of the intersection vol(B ∩ C ∩ D) = vol(A) has nothing to do with the simplicity
of vol(B),vol(C),vol(D); the computation of vol(B ∩ C ∩ D) is hard! But here comes the
advantage of the line sampling: the endpoints of a “piece” (= intersection of A with a line)
are either on B , or C, or D, and the intersection of a straight line with a ball (or cube, or
tetrahedron) is a trivial calculation. This gives a practical solution for the actual computation
of the endpoints of the “pieces” for very large classes of convex sets.

I just outlined the 3-dimensional case, but this procedure clearly works in any dimension,
and seems very promising even if the set is not convex. What we really need is that the
intersection of the line segment L(n) and the periodic extension of A consists of “not too
many pieces (= short line-segments)”.

Note that the 2-dimensional case (= area computation) is particularly simple: then we
have a lucky shortcut. Indeed, “area under the curve” is just the definite integral of a function
in one variable. This leads us to the classical field of numerical integration and the classical
quadrature formulas (e.g., midpoint rule, trapezoidal rule, Simpson’s rule).

Unfortunately, in higher dimensions—i.e., for functions of at least two variables—the
classical quadrature formulas all break down, mainly because there is no natural analog of
the “equidistant set in the unit interval” 0,1/n,2/n, . . . , (n − 1)/n in higher dimensions.
This is why in higher dimensions the only practical solution is the Monte Carlo method
(“random sampling”). What we demonstrate here is that, in the classical subject of volume
computation, a novel way of regular sampling—namely, line sampling—can beat the Monte
Carlo method.

I conclude Sect. 4 with a proof of Proposition 4.1 (the proof of Theorem 4 is postponed
to Sect. 6).

4.3 Proof of Proposition 4.1

The basic idea is to involve probability theory (I assume that the reader is familiar with the
basic concepts such as probability space, event, and random variable).
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Given any 0 < α < 1 and 0 < β < 1, let X (α,β;N) denote the arithmetic progression
β + α,β + 2α, . . . , β + Nα (mod 1). Here (mod 1) means that we take the fractional part
of β + jα (1 ≤ j ≤ N ), so the elements of X (α,β;N) are all in the unit interval [0,1). We
write the elements of X (α,β;N) in increasing order:

X (α,β;N) = {x1, x2, . . . , xN } where

0 ≤ x1 = β + j1α < x2 = β + j2α < · · · < xN = β + jNα < 1

and j1, j2, . . . , jN is a permutations of 1,2, . . . ,N .
In general, given an arbitrary increasing sequence

0 ≤ x1 < x2 < x3 < · · · < xm < 1

in the unit interval, let gap(X ) denote the smallest gap:

gap(X ) = min
1≤j≤N

(xj+1 − xj ) where xN+1 = 1 + x1

and X = {x1, x2, . . . , xN }. We choose a sufficiently large positive integer r such that 0 <
1
r
< gap(X ). We define 2r modified ±1-valued Rademacher functions as follows. For every

vector

v = (v1, v2, . . . , vr ) with vj ∈ {−1,1}, j = 1,2, . . . , r,

we define a modified Rademacher function Rv(x) in 0 < x < 1 by the following rule:

if
2j − 2

2r
≤ x <

2j − 1

2r
then Rv(x) = vj , and

if
2j − 1

2r
≤ x <

2j

2r
then Rv(x) = −vj .

The idea behind this construction is to associate with the given point set

X = {x1, x2, x3, . . . , xN }
(having minimum gap > 1/r) a sequence of N independent random variables: namely, a
sequence of Heads and Tails of length N . Indeed, we consider the set

�∗ = {v = (v1, v2, . . . , vr ) : vj ∈ {−1,1}, j = 1,2, . . . , r}
a discrete probability space (or sample space); define the events

Hi = {v ∈ �∗ : Rv(yi) = 1}, Ti = {v ∈ �∗ : Rv(yi) = −1}
(here I used the letters “H” and “T” on purpose to indicate Heads and Tails), and define the
random variables Xi , i = 1,2, . . . ,N :

Xi = Xi(v) = Rv(xi),

which has value 1 or −1 depending on whether v ∈ Hi or v ∈ Ti (Heads and Tails). For every
v ∈ �∗ the average

1

N

N∑

i=1

Xi(v) = 1

N

N∑

i=1

Rv(xi)
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is a Riemann sum approximating the integral
∫ 1

0 Rv(x) dx = 0 which equals zero. It follows
from the construction, based on modified Rademacher functions and the gap condition, that
X1,X2, . . . ,XN is a sequence of independent random variables with common distribution
Pr[Xi = 1] = Pr[Xi = −1] = 1/2. That is, X1,X2, . . . ,XN is indeed a sequence of Heads
and Tails.

Therefore, we can apply the central limit theorem, which says that for any fixed real
number λ > 0,

Pr[|X1 + X2 + · · · + XN | ≤ λ
√

N ] = 1√
2π

∫ λ

−λ

e−u2/2 du + O(N−1/2). (4.13)

Here “Pr” means equiprobability in the discrete probability space �∗. Since

|X1 + X2 + · · · + XN |

=
∣
∣
∣
∣
∣

N∑

i=1

Rv(xi)

∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣

N∑

i=1

Rv(xi) − N

∫ 1

0
Rv(x) dx

∣
∣
∣
∣
∣
= error(v; X ),

we can rewrite (4.13) as

Pr[error(v; X ) ≤ λ
√

X] = c0(λ) + O(N−1/2), (4.14)

where

c0(λ) = 1√
2π

∫ λ

−λ

e−u2/2 du.

Equation (4.14) is clearly equivalent to

2−r
∣
∣
∣
{

v ∈ �∗ : error(v; X ) ≤ λ
√

N
}∣
∣
∣= c0(λ) + O(N−1/2), (4.15)

where error(v; X ) stands for the approximation error

∣
∣
∣
∣
∣

N∑

i=1

Rv(xi) − N

∫ 1

0
Rv(x) dx

∣
∣
∣
∣
∣
,

based on the N -element set X = {x1, x2, . . . , xm} of division points.
Next we return to the special case X = X (α,β;N):

X (α,β;N) = {x1, x2, . . . , xN } where

0 ≤ x1 = β + j1α < x2 = β + j2α < · · · < xN = β + jNα < 1

and j1, j2, . . . , jN is a permutations of 1,2, . . . ,N . We show that for the majority of the
pairs (α,β) ∈ [0,1]2,

gap(X (α,β;N)) >
1

N2
, (4.16)

implying that for these pairs (α,β) we can specify the value of parameter r (used in the
construction of the independent random variables X1, . . . ,XN above) as r = N2.
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To prove (4.16), first note that the minimum gap gap(X (α,β;N)) is independent of the
value of β , so it suffices to study the sequence ‖jα‖, 1 ≤ j < N , where ‖y‖ denotes the
distance of a real number y from the nearest integer. Thus we have

gap(X (α,β;N)) = gap(X (α,0;N)) = min
1≤k≤N−1

‖kα‖. (4.17)

The “bad” case

min
1≤k≤N−1

‖kα‖ ≤ 1

N2

means that, there is an integer m = m(α) in 1 ≤ m ≤ N − 1 such that

‖mα‖ ≤ 1

N2
,

or equivalently,

α ∈
[

q

m
− 1

mN2
,

q

m
+ 1

mN2

]

= I (m;q;N)

for some integer q = q(α) in 0 ≤ q ≤ m. We form the union set

B = B(N) =
⋃

1≤m<N

⋃

0≤q≤m

I (m;q;N),

which is considered the set of “bad” α’s. We can easily estimate the Lebesgue measure (i.e.,
length) of the set B:

measure(B) = measure(B(N)) ≤
∑

1≤m<N

∑

0≤q≤m

length (I (m;q;N))

=
∑

1≤m<N

∑

0≤q≤m

2

mN2
= 2

N2

∑

1≤m<N

m + 1

m
<

4

N
. (4.18)

Consider the set of “good” pairs

G(N) =
{

(α,β) ∈ [0,1]2 : gap(X (α,β;N)) >
1

N2

}

.

By (4.16)–(4.18),

area(G(N)) > 1 − 4

N
, (4.19)

where of course “area” means the two-dimensional Lebesgue measure.
Applying (4.15) for every pair (α,β) ∈ G(N) with r = N2, we have

1

area(G(N))

∫

G(N)

2−r
∣
∣
∣
{

v ∈ �∗ : error(v; X (α,β;N)) ≤ λ
√

N
}∣
∣
∣ dα dβ

= c0(λ) + O(N−1/2). (4.20)

Since (4.20) is an average, there must exist a v0 ∈ �∗ such that

area{(α,β) ∈ G(N) : error(v0; X (α,β;N)) ≤ λ
√

N}
area(G(N))

≤ c0(λ) + O(N−1/2). (4.21)



Deterministic Approach to the Kinetic Theory of Gases 193

We choose the value of λ > 0 such that

c0(λ) = 1√
2π

∫ λ

−λ

e−u2/2 du = 1

3
.

The tables of the normal distribution give the explicit value λ = λ0 = 0.43. Then, by (4.21),
for the majority of the pairs (α,β) ∈ G(N),

error(v0; X ) =
∣
∣
∣
∣
∣

N∑

i=1

Rv0(xi) − N

∫ 1

0
Rv0(x) dx

∣
∣
∣
∣
∣
> λ0

√
N = 0.43

√
N. (4.22)

The modified Rademacher function Rv0(x) has values ±1, but Proposition 4.1 is about a
subset A = AN ⊂ [0,1] of measure 1/2. The switch from Rv0(x) to the desired A = AN ⊂
[0,1] is obvious: A = AN is defined as the set of x ∈ [0,1] for which Rv0(x) = 1. The switch
from ±1 to 1,0 (i.e., the characteristic function of A) means a “halving” in (4.22), which
completes the proof of Proposition 4.1.

5 Proof of Theorem 1: Starting with Fourier Analysis

5.1 Using Parseval’s Formula

In view of the geometric trick of unfolding the billiard paths to straight lines in the 3-space, it
suffices to deal with N torus lines xk(t) = (xk,1(t), xk,2(t), xk,3(t)) (mod 1), k = 1,2, . . . ,N

where

xk,1(t) = uk,1tv + yk,1, xk,2(t) = uk,2tv + yk,2, xk,3(t) = uk,3tv + yk,3 (5.1)

and

u2
k,1 + u2

k,2 + u2
k,3 = 1, (5.1′)

i.e., uk = (uk,1, uk,2, uk,3) is a unit vector. Since v ≥ 1 is the common speed of the particles,
the length of the straight line segment xk(t), 0 < t < T is clearly vT . The pair (yk,uk)

describes the starting point yk = xk(0) ∈ I 3 = [0,1)3 and the direction uk ∈ S2 (S2 is the
unit sphere) of the kth torus-line xk(t). We call the pair (yk,uk) the initial condition of the
kth torus-line xk(t).

Let A ⊂ I 3 = [0,1)3 be an arbitrary Lebesgue measurable subset. Via unfolding it cor-
responds to the union of 8 copies of the given subset in Theorem 1, where we shrink the
corresponding 2 × 2 × 2 cube to the unit cube. Consider the Fourier series of the 0-1-valued
characteristic function χA of the set A:

χA(w) =
∑

r∈Z3

are
2π ir·w with ar =

∫

A

e−2π ir·z dz, (5.2)

where r · w = r1w1 + r2w2 + r3w3 denotes the standard inner product of vectors. Clearly
a0 = vol(A) (= the volume of A), and by Parseval’s formula,

∑

r∈Z
3:

r �=0

|ar|2 =
∫

I3
χ2

A(w) dw − |a0|2 = vol(A) − vol2(A). (5.3)
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Let T ≥ 1 be a real number. We denote the total time that the kth torus-line xk(t) (defined
in (5.1)) spends in subset A during 0 < t < T by Ak(T ) = Ak(T ;yk,uk): we have

Ak(T ) = Ak(T ;yk,uk) = measure {t ∈ [0, T ] : xk(t) ∈ A (mod 1)}

=
∫ T

0
χA(xk(t)) dt =

∫ T

0

∑

r∈Z3

are
2π ir·xk(t) dt

=
∑

r∈Z3

ar

∫ T

0
e2π ir·xk(t) dt =

∑

r∈Z3

are
2π ir·yk

∫ T

0
e2π i(r·uk)vt dt

= a0T +
∑

r∈Z
3:

r �=0

are
2π ir·yk · e2π i(r·uk)vT − 1

2π i(r · uk)v
. (5.4)

Let M be an arbitrary integer in the range 1 ≤ M ≤ N , and consider the sum

FM = FM(yk,uk : k = 1,2, . . . ,M) =
M∑

k=1

(
1

T
Ak(T ;yk,uk) − vol(A)

)

. (5.5)

Fix the M unit vectors uk ∈ S2, k = 1,2, . . . ,M , and evaluate the square integral

∑

1
(uk : k = 1,2, . . . ,M) =

∫

I3
. . .

∫

I3
(FM(yk,uk : k = 1,2, . . . ,M))2 dy1 . . . dyM.

(5.6)
Note that (5.6) is a multiple integral, which consists of M single integrals.

The evaluation of (5.6) is rather simple if we multiply out the square F 2
M—where the sum

FM is defined in (5.4)–(5.5)—and apply the two orthogonality relations:
∫

I3

∫

I3
e2π i(r1·yj −r2·yk) dyj dyk = 0 (5.7)

for any r1, r2 ∈ Z
3 \ 0 and j �= k, and

∫

I3
e2π i(r1−r2)·y dy = 0, (5.8)

unless r1 = r2. Then the majority of the terms (= sub-integrals) turn out to be zero, and we
obtain the relatively simple sum

∑

1
=
∑

1
(uk : k = 1,2, . . . ,M)

=
∑

r∈Z
3:

r �=0

|ar|2 ·
M∑

k=1

∣
∣
∣
∣
e2π i(r·uk)vT − 1

2π(r · uk)vT

∣
∣
∣
∣

2

. (5.9)

We can also say that (5.9) is a consequence of Parseval’s formula.
Next we integrate

∑
1 over the direction vectors uk ∈ S2, k = 1,2, . . . ,M , which leads

to another multiple integral consisting of M single integrals (in order to normalize, we have
to divide by 4π , which is the surface area of the unit sphere S2):

∑∗
1
= 1

4π

∫

S2
. . .

1

4π

∫

S2

∑

1
(uk : k = 1,2, . . . ,M)du1 . . . duM
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= 1

4π

∫

S2
. . .

1

4π

∫

S2

∑

r∈Z
3:

r �=0

|ar|2 ·
M∑

k=1

∣
∣
∣
∣
e2π i(r·uk)vT − 1

2π(r · uk)vT

∣
∣
∣
∣

2

du1 . . . duM. (5.10)

Let’s focus on the last factor in (5.10): we have the obvious upper bound

∣
∣
∣
∣
e2π i(r·uk)vT − 1

2π(r · uk)vT

∣
∣
∣
∣≤ min

{
1

π |r · uk|vT
,1

}

. (5.11)

I recall that the dot product r · u has magnitude |r · u| = |r| cos θ , where θ is the angle
between the unit vector u ∈ S2 and r ∈ Z

3 \ 0.
In order to apply (5.11) in (5.10), we need a well-known fact about the surface area of

some spherical domains. Let e ∈ S2 be an arbitrary but fixed unit vector, and let 0 < δ < 1 be
an arbitrary real number. Consider the “spherical belt” (often called the “spherical zone”):

S2(e; δ) = {
u ∈ S2 : |e · u| ≤ δ

}
.

On one hand it is trivial that the surface area of the “belt” S2(e; δ) is independent of e; it is
very surprising, on the other hand, that the dependence on δ is just plain linear:

SurfaceArea
(
S2(e; δ))= 4πδ. (5.12)

Equation (5.12) implies that, for any r ∈ Z
3 \ 0 and any real number � with 0 < � < |r|,

SurfaceArea
({

u ∈ S2 : |r · u| ≤ �
})= 4π · �

|r| . (5.13)

By using (5.11) and (5.13), we can easily estimate (5.10) as follows. First note that

min

{
1

π |r · u|vT
,1

}

⇐⇒ |r · u| ≤ 1

πvT
. (5.14)

By (5.13)–(5.14),

1

4π

∫

S2
min

{
1

(π |r · u|vT )2 ,1

}

du

= 1

πvT |r| + 1

(π |r|vT )2

∫ 1

δ(r)

dx

x2
= 1

πvT |r| + 1

(π |r|vT )2
(πvT |r| − 1)

= 2

πvT |r| − 1

(πvT |r|)2
, (5.15)

where δ(r) = (πvT |r|)−1 (see (5.14)).
By (5.10)–(5.11) and (5.15),

∑∗
1

≤
M∑

k=1

∑

r∈Z
3:

r �=0

|ar|2 ·
(

1

4π

∫

S2
. . .

1

4π

∫

S2
min

{
1

(π |r · uk|vT )2 ,1

}

du1 . . . duM

)

= M
∑

r∈Z
3:

r �=0

|ar|2 ·
(

2

πvT |r| − 1

(πvT |r|)2

)
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≤ 2M

πvT

∑

r∈Z
3:

r �=0

|ar|2 · 1

|r| ≤ 2M

πvT
· vol(A), (5.16)

where in the last step we applied (5.3). Therefore, we just completed the proof of the fol-
lowing result.

Lemma 5.1 We have
∑∗

1
≤ 2

πvT
· M · vol(A), (5.17)

where the square-integral
∑∗

1 (see (5.10)) is the following multiple integral

(4π)−M

∫

I3
. . .

∫

I3

∫

S2

. . .

∫

S2

(
M∑

k=1

(
1

T
Ak(T ;yk,uk) − vol(A)

))2

dy1 . . . dyM du1 . . . duM, (5.18)

which consists of 2M single integrals.

Notice that in (5.18) we had to break up the long integral into two lines; we keep up
doing this practice for the rest of the paper.

A Technical Note The argument in (5.4) (and in (5.9), and in many similar cases below)
is rather informal: for example, we changed the order of infinite summation and integration,
but didn’t say anything about under what condition can we really do that. Note, for example,
that for an “ugly” measurable set A the Fourier series of the characteristic function χA can
be divergent in many points, but this kind of technical nuisance is totally irrelevant for us:
what we really care about is the Parseval formula. It is a well-known fact that the Parseval
formula characterizes the L2 space = the class of functions for which the Lebesgue square
integral

∫ 1
0 f 2(x) dx exists (and finite); see the Riesz–Fisher theorem. The point is that the

characteristic function f = χA clearly belongs to L2, and we can safely work in the L2 space
(“Lebesgue square-integrable”). The precise proof of this is a standard argument that I very
briefly outline here. If f = g is a sufficiently smooth function—say, twice differentiable
with continuous derivative—then its Fourier series is absolutely convergent, and so every
manipulation that we carried out (such as, changing the order of summation and integration)
is perfectly justified and legitimate. The last step is to approximate a Lebesgue square-
integrable function f with a sequence of smooth functions gk , k = 1,2,3, . . . : we want the
approximation error |f (x)−gk(x)| to be arbitrarily small (as k → ∞) except on a set of x’s
with small Lebesgue measure (the measure tends to zero as k → ∞). This last step is just
another routine argument in the theory of the Lebesgue integral.

Now we are ready to give

5.2 A Brief Outline of the Rest of the Proof of Theorem 1

We introduce the random variable E = E(T ) (see (5.5)):

E = E(N; [1,M];T ) = E(T ;yk,uk : 1 ≤ k ≤ M) = 1

T

M∑

k=1

Ak(T ;yk,uk). (5.19)
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Combining Lemma 5.1 with Chebyshev’s well-known inequality, we obtain that the typical
size of E is

E = M · vol(A) + O

(√
1

vT
· M · vol(A)

)

, (5.20)

and (5.20) holds for the majority of the initial conditions yk,uk : 1 ≤ k ≤ M . For notational
simplicity assume that the ratio N/M = m ≥ 1 is an integer; the optimal choice of parameter
m will be specified later. Let � denote the set of all N ! permutations of 1,2, . . . ,N , and let
γ ∈ � be an arbitrary permutation, i.e., γ (1), γ (2), . . . , γ (N) is a rearrangement of the first
N integers. (The reason behind introducing the permutations is to validate the combinatorial
calculations in (5.27)–(5.31) below.) Write

E1(γ ) = E(N; [1,M];T ;γ ), E2(γ ) = E(N; [M + 1,2M];T ;γ ),
(5.21)

E3(γ ) = E(N; [2M + 1,3M];T ;γ ), . . . , Em(γ ) = E(N; [N − M + 1,N ];T ;γ ),

where for any integer h in 1 ≤ h ≤ m,

Eh(γ ) = Eh(T ;yγ (k),uγ (k) : (h − 1)M + 1 ≤ k ≤ hM;γ )

= 1

T

hM∑

k=(h−1)M+1

Aγ(k)(T ;yγ (k),uγ (k))

= 1

T

∫ T

0
Zh(γ ; t) dt, (5.22)

where

Zh(γ ; t) = Zh(yγ (k),uγ (k) : (h − 1)M + 1 ≤ k ≤ hM;γ ; t)

=
hM∑

k=(h−1)M+1

χA(xγ (k)(t)). (5.23)

In view of (5.22)–(5.23) we can say that, the “ time average” (or “expectation”) of Zh(γ ; t),
as t runs in 0 < t < T , equals Eh(γ ); or formally,

1

T

∫ T

0
Zh(γ ; t) dt = Eh(γ ). (5.24)

The values of Zh(γ ; t), as t runs in 0 < t < T , are non-negative integers 0,1,2,3, . . .; now
for every integer � ≥ 0 we define the set

Wh(γ ;�) = Wh(yγ (k),uγ (k) : (h − 1)M + 1 ≤ k ≤ hM;γ ;�)
= {t ∈ [0, T ] : Zh(γ ; t) = �}. (5.25)

Then we have the following disjoint decomposition of the interval 0 ≤ t ≤ T :

[0, T ] = Wh(γ ;0) ∪ Wh(γ ;1) ∪ Wh(γ ;2) ∪ Wh(γ ;3) ∪ · · ·
= Wh(γ ;0) ∪ Wh(γ ;1) ∪ Wh(γ ;≥ 2).
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Write

Vh(γ ;�) = Vh(yγ (k),uγ (k) : (h − 1)M + 1 ≤ k ≤ hM;γ ;�) = 1

T
measure (Wh(γ ;�)) ,

implying

0 ≤ Vh(γ ;�) ≤ 1.

We need to give an upper bound for the size Vh(γ ;�) of a “typical” set Wh(γ ;�) with � ≥ 2
(“typical” means the majority of the initial conditions yγ (k),uγ (k) : (h − 1)M + 1 ≤ k ≤ hM

and a “typical” permutation γ ). In fact, we will estimate a whole power-of-two group

2j+1−1∑

�=2j

Vh(γ ;�) for any integer j ≥ 1.

We will obtain such an upper bound by using a second moment argument that I am outlining
below. For notational simplicity I omit the fixed permutation γ ∈ � in the notation.

Since � ≥ 2, we can write � = �1 + �2 with 1 ≤ �1 = ��/2� and 1 ≤ �2 = ��/2�. For
simplicity assume that M is even; let I1 ∪ I2 be an arbitrary halving split of the set {(h −
1)M + 1, (h − 1)M + 2, . . . , hM} of M integers into two disjoint subsets of size M/2 each.
There are exactly

( M

M/2

)
such halving splits. For any fixed halving split (I1, I2), write

ZI1(t)ZI2(t) =
⎛

⎝
∑

k1∈I1

χA(xk1(t))

⎞

⎠

⎛

⎝
∑

k2∈I2

χA(xk2(t))

⎞

⎠ .

Let � ≥ 2; if t0 ∈ Wh(�) ⇔ Zh(t0) = � for some 0 ≤ t0 ≤ T , then at least
(

�

�1

)
2−� part of the

( M

M/2

)
halving splits have the property that

ZI1(t0) = �1 and ZI2(t0) = �2, implying ZI1(t0)ZI2(t0) = �1�2. (5.26)

Indeed, this fact is a corollary of a standard combinatorial problem as follows. Suppose a
box contains � red balls and M − � white balls, where 2 ≤ � ≤ M(= even). If we randomly
choose half of the balls from the box, what is the probability that we have exactly �1 red
balls among them? The probability in question is clearly

Prob(�,M) =
(

�

�1

)(
M−�

M/2−�1

)

(
M

M/2

) . (5.27)

If � is fixed and M → ∞ then lim Prob(�,M) = ( �

�1

)
2−�, and a simple calculation shows

that for any 2 ≤ � ≤ M(= even) we have the inequality

Prob(�,M) ≥
(

�

�1

)

2−� ≥ 1

2
√

�
. (5.28)

Similarly, we extend the case

ZI1(t0) = �1 = ��/2� and ZI2(t0) = �2 = ��/2�
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in (5.26) to all

ZI1(t0) = �′ and ZI2(t0) = �′′ where
� − √

2�

2
< �′ <

� + √
2�

2
(5.29)

and �′′ = � − �′. This leads to the following extension of (5.28): for any � ≥ 2 we have

2−�
∑

∣
∣
∣ �

2 −�′
∣
∣
∣<

√
�/2

(
�

�′

)

≥ 1

2
. (5.30)

(The inequality in (5.30) is a well-known elementary fact about the binomial distribution in
probability theory: it can be proved by Chebyshev’s inequality, or simply by estimating the
binomial coefficients via Stirling’s formula; note that for large � the central limit theorem
gives a limit constant which is better than 1/2.)

Let’s return to (5.29): we clearly have

ZI1(t0)ZI2(t0) = �′�′′ >
� − √

2�

2
· � + √

2�

2
= �2 − 2�

4
(5.31)

for all �′, �′′ satisfying (5.29).
It follows from (5.30) that, in order to estimate the sum of Vh(�) with 2j ≤ � < 2j+1 in

the typical case, it suffices to have an analog of Lemma 5.1 for the term

E(I1, I2) = 1

T

∫ T

0
ZI1(t)ZI2(t) dt.

We will prove later that typically

E(I1, I2) =
(

M

2
· vol(A)

)2

+ O

(
1√
vT

M · vol(A)

)

,

see Lemma 7.1 at the end of Sect. 7. For the general case; see Lemma 9.1 at the end of
Sect. 9. Finally, by putting these facts together, we will be able to complete the proof
of Theorem 1 by repeated applications of a basically Chebyshev’s type inequality; see
Sects. 10–12.

We conclude this section with a brief preview of how the proof of Theorem 1 actually
ends (see Sect. 12 after (12.9)). Let’s return to (5.25); for notational convenience, we omit
the initial condition and the permutation. We write

Wh(≥ 1) =
∞⋃

�=1

Wh(�).

Let μ denote the usual one-dimensional Lebesgue measure (“length”). By the inclusion-
exclusion principle (“sieve argument”)

μ{0 ≤ t ≤ T : xk(t) /∈ A for all k = 1,2, . . . ,N}

= μ

(
m⋂

h=1

Wh(0)

)

= μ([0, T ]) −
m∑

h=1

μ(Wh(≥ 1))
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+
∑

1≤h1<h2≤m

μ
(
Wh1(≥ 1) ∩ Wh2(≥ 1)

)

−
∑

1≤h1<h2<h3≤m

μ
(
Wh1(≥ 1) ∩ Wh2(≥ 1) ∩ Wh3(≥ 1)

)

+
∑

1≤h1<h2<h3<h4≤m

μ
(
Wh1(≥ 1) ∩ Wh2(≥ 1) ∩ Wh3(≥ 1) ∩ Wh4(≥ 1)

)∓ · · · .

(5.32)

We will show that “typically”

1

T
μ
(
Wh1(≥ 1) ∩ Wh2(≥ 1) ∩ · · · ∩ Whj

(≥ 1)
)= (M · vol(A))j + negligible error (5.33)

holds for all 1 ≤ j ≤ m and 1 ≤ h1 < · · · < hj ≤ m. Let

vol(A) = λ

N
, (5.34)

where λ > 0 is a fixed constant. Using (5.33)–(5.34) in (5.32), we obtain that

1

T
μ

(
m⋂

h=1

Wh(0)

)

= 1 − m · λ

m
+
(

m

2

)

·
(

λ

m

)2

−
(

m

3

)

·
(

λ

m

)3

+
(

m

4

)

·
(

λ

m

)4

∓ · · · + negligible error. (5.35)

If m is “large”, then
(

m

j

)

≈ mj

j ! ,

and so (5.35) basically gives the Taylor series of ex with x = −λ:

1

T
μ{0 ≤ t ≤ T : xk(t) /∈ A for all k = 1,2, . . . ,N}

= 1

T
μ

(
m⋂

h=1

Wh(0)

)

= 1 − λ + λ2

2! − λ3

3! + λ4

4! ∓ · · · + negligible error

= e−λ + negligible error, (5.36)

which is a special case of the Poisson distribution. The main difficulty is how to prove (5.33)
(we are guided by the Kronecker–Weyl Theorem (2.1) and the intuition (2.2)).

Now I interrupt the long proof of Theorem 1, and include the proof of Theorem 4. I do it
here, because the proof of Theorem 4 is very similar to that of Lemma 5.1; the main novelty
is to involve a new diophantine approximation type lemma (see Lemma 6.1 below). Also, in
the proof of Theorem 4 we have to be more careful with the estimations (for example, in the
last line of (5.16) we just used the trivial lower bound |r| ≥ 1, instead of estimating a more
complicated sum).



Deterministic Approach to the Kinetic Theory of Gases 201

6 Proof of Theorem 4

In view of the trick of unfolding the billiard path to a straight line in the plane (explained
in Sect. 1), it suffices to deal with torus-lines (of course we shrink the corresponding 2 × 2
square to the unit square). Let A ⊂ I 2 = [0,1)2 be an arbitrary Lebesgue measurable subset
(via unfolding it corresponds to the union of four copies of the given subset A in Theorem 4),
and consider the Fourier series of the 0-1 valued characteristic function χA of the set A:

χA(u) =
∑

r∈Z2

are
2π ir·u with ar =

∫

A

e−2π ir·y dy, (6.1)

where r ·u = r1u1 +r2u2 denotes the standard inner product of vectors. Clearly a0 = area(A)

(= the 2-dimensional Lebesgue measure of A), and by Parseval’s formula,

∑

r∈Z
2:

r �=0

|ar|2 = area(A) − area2(A). (6.2)

Consider the torus-line x(t) = (x1(t), x2(t)) (mod 1) where

x1(t) = α1t + y1, x2(t) = α2t + y2 and α2
1 + α2

2 = 1. (6.3)

The length of the straight line segment x(t), 0 < t < T is clearly T , i.e., time = arc-length.
The pair (y, (α1, α2)) describes the starting point y ∈ [0,1)2 and the angle (by the point
(α1, α2) on the unit circle) of the torus-line x(t). The total time A(T ) = A(T ;y, (α1, α2))

that the torus-line x(t) (defined in (6.3)) spends in subset A during 0 < t < T equals

A(T ) = A(T ;y, (α1, α2)) = measure {t ∈ [0, T ] : x(t) ∈ A (mod 1)}

=
∫ T

0
χA(x(t)) dt =

∫ T

0

∑

r∈Z2

are
2π ir·x(t) dt

=
∑

r∈Z2

ar

∫ T

0
e2π ir·x(t) dt =

∑

r∈Z2

are
2π ir·y

∫ T

0
e2π i(α1r1+α2r2)t dt

= a0T +
∑

r∈Z
2:

r �=0

are
2π ir·y · e2π i(α1r1+α2r2)T − 1

2π i(α1r1 + α2r2)
. (6.4)

Since a0 = area(A) (= Lebesgue measure of A), by (6.4) we have

discrepancy = A(T ;y, (α1, α2)) − T · area(A)

=
∑

r∈Z
2:

r �=0

ar · e2π i(α1r1+α2r2)T − 1

2π i(α1r1 + α2r2)
· e2π ir·y. (6.5)

Fix any point (α1, α2) on the unit circle α2
1 + α2

2 = 1, and run the starting point y through
the unit square; then by Parseval’s formula (I 2 = [0,1]2)

∫

I2
(A(T ;y, (α1, α2)) − T · area(A))2 dy
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=
∑

r∈Z
2:

r �=0

|ar|2 ·
∣
∣
∣
∣
e2π i(α1r1+α2r2)T − 1

2π(α1r1 + α2r2)

∣
∣
∣
∣

2

. (6.6)

Let’s study the last factor in (6.6): we have the obvious upper bound

∣
∣
∣
∣
e2π i(α1r1+α2r2)T − 1

2π(α1r1 + α2r2)

∣
∣
∣
∣≤ min

{
1

π |α1r1 + α2r2| , T
}

. (6.7)

Key Definition Let 0 < ε < 1/2; we say that a point (α1, α2) on the unit circle α2
1 +α2

2 = 1
is ε-bad if there exists an r ∈ Z

2 such that

|α1r1 + α2r2| ≤ ε

40|r| · log2 |r| · (log2 log2 |r|)2
(6.8)

for some |r| ≥ 8 or

|α1r1 + α2r2| ≤ ε

40|r| (6.9)

for some 1 ≤ |r| < 8, where |r| =
√

r2
1 + r2

2 .
Note that the complicated denominator in (6.8) is motivated by the fact that the numerical

series
∞∑

n=3

1

n(logn)2
(6.10)

is very close to the border of convergence-divergence: the slightly larger series

∞∑

n=3

1

n logn

is already divergent, but (6.10) is still convergent (see (6.15) below; of course we could
replace the exponent 2 in (6.10) with 1 + ε, but the gain would be negligible).

Next I show that the set B of all ε-bad points (α1, α2) on the unit circle α2
1 +α2

2 = 1 forms
a small minority: the measure of B is negligible compared to the circumference 2π of the
unit circle. (Note in advance that at the end we will throw out all initial conditions having
ε-bad angles.)

Lemma 6.1 The set B of ε-bad points (see the Key Definition) is small in the sense that

measure(B)

2π
<

ε

2
. (6.11)

Proof Notice that α1r1 + α2r2 is a dot product of two vectors, so the absolute value |α1r1 +
α2r2| equals |r| sin θ , where θ is the angle between the unit vector (α1, α2) and the vector
(−r2, r1) perpendicular to r = (r1, r2). Therefore, given any r ∈ Z

2 with |r| ≥ 8, inequality
(6.8) defines two short diametrically opposite arcs on the unit circle α2

1 + α2
2 = 1 with total

arc-length

4 arcsin

(
ε

40|r|2 · log2 |r| · (log2 log2 |r|)2

)

,
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where of course arcsin is the inverse of sin. Similarly, given any r ∈ Z
2 with 1 ≤ |r| < 8,

inequality (6.9) defines two short diametrically opposite arcs on the unit circle α2
1 + α2

2 = 1
with total arc-length

4 arcsin

(
ε

40|r|2
)

.

It follows that

measure(B) <
∑

r∈Z
2:

1≤|r|<8

4 arcsin

(
ε

40|r|2
)

+
∑

r∈Z
2:|r|≥8

4 arcsin

(
ε

40|r|2 · log2 |r| · (log2 log2 |r|)2

)

. (6.12)

By using the trivial inequality

arcsin(x) < x + x2 for 0 < x < 1, (6.13)

we can easily estimate the sums in (6.12). We begin with the auxiliary sum

∑

1
=

∑

r∈Z
2:|r|≥8

1

|r|2 · log2 |r| · (log2 log2 |r|)2
. (6.14)

We estimate (6.14) by applying a standard power-of-two decomposition:

∑

1
=

∞∑

k=3

∑

2k≤|r|<2k+1

1

|r|2 · log2 |r| · (log2 log2 |r|)2

<

∞∑

k=3

π4k+1 · 1

4k · k · (log2 k)2

= 4π

∞∑

k=3

1

k · (log2 k)2
. (6.15)

Note that in (6.15) we used the trivial fact that the number of lattice points in the annulus
2k ≤ |r| < 2k+1 is less than the area of the big circle π · 4k+1.

Returning to (6.15), we can estimate the infinite series with the corresponding definite
integral:

∞∑

k=3

1

k · (log2 k)2
<

∫ ∞

2

dx

x(log2 x)2
= log 2,

and using this in (6.15), we have

∑

1
< 4π log 2. (6.16)
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Similarly,

∑

2
=

∑

r∈Z
2:|r|≥8

1

|r|4 · (log2 |r|)2 · (log2 log2 |r|)4

=
∞∑

k=3

∑

2k≤|r|<2k+1

1

|r|4 · (log2 |r|)2 · (log2 log2 |r|)4

<

∞∑

k=3

π4k+1 · 1

16k · k2 · (log2 k)4
<

π

100
. (6.17)

We also need the simple numerical facts

∑

4
=

∑

r∈Z
2:

1≤|r|<8

1

|r|4 <
∑

3
=

∑

r∈Z
2:

1≤|r|<8

1

|r|2 < 6π. (6.18)

Combining (6.12)–(6.18), we have

measure(B)

2π
<

ε

20π

∑

1
+ ε2

800π

∑

2
+ ε

20π

∑

3
+ ε2

800π

∑

4
<

ε

2
,

completing the proof of Lemma 6.1. �

Let A denote the complement of B, that is, A is the set of points (α1, α2) on the unit
circle α2

1 + α2
2 = 1 which are not ε-bad (see the Key Definition). We want to give an upper

bound to the integral
∫

A

(∫

I2
(A(T ;y, (α1, α2)) − T · area(A))2 dy

)

ds, (6.19)

where in the outer integral of (6.19) “ds” indicates integration with respect to the arc-length
(since A is a “large” subset of the unit circle). We prove the following result.

Lemma 6.2 We have
∫

A

(∫

I2
(A(T ;y, (α1, α2)) − T · area(A))2 dy

)

ds

≤ area(A)(1 − area(A)) · 2688

π2
· 1

ε
log2 T · (log2 log2 T )2.

Proof By using (6.6)–(6.7), we have

integral(6.19) ≤
∑

r∈Z
2:

r �=0

|ar|2 ·
∫

A
min

{
1

π2(α1r1 + α2r2)2
, T 2

}

ds. (6.20)

If (α1, α2) ∈ A then by definition (see (6.8)–(6.9))

|α1r1 + α2r2| > ε

40|r| · log2 |r| · (log2 log2 |r|)2
(6.21)
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for all |r| ≥ 8 and

|α1r1 + α2r2| > ε

40|r| (6.22)

for all 1 ≤ |r| < 8. Let r ∈ Z
2 with |r| =

√
r2

1 + r2
2 ≥ 8 be arbitrary but fixed; to estimate the

integral at the end of (6.20), we apply a standard power-of-two decomposition of the set

A(r) = {(α1, α2) : α2
1 + α2

2 = 1, (6.21) holds} ⊃ A (6.23)

as follows: let � be an arbitrary integer in the range

0 ≤ � ≤ L(r) = log2

(
40

ε
|r| · log2 |r| · (log2 log2 |r|)2

)

, (6.24)

and write

A�(r) = {
(α1, α2) : α2

1 + α2
2 = 1, 2−�−1 < |α1r1 + α2r2| ≤ 2−�

}
. (6.25)

Finally, write

A−1(r) = {
(α1, α2) : α2

1 + α2
2 = 1, |α1r1 + α2r2| > 1

}
, (6.26)

and so we have the disjoint decomposition

A(r) =
⋃

−1≤�≤L(r)

A�(r) ⊃ A. (6.27)

For every � ≥ 0 we have the estimation

measure(A�(r)) ≤ 4 arcsin

(
1

|r|2�

)

≤ 4

(
1

|r| · 2�
+ 1

|r|2 · 4�

)

, (6.28)

where (6.28) is just an easy adaptation of the argument at the beginning of the proof of
Lemma 6.1.

Motivated by (6.20) and (6.27), we need to estimate the sum

∑

r∈Z
2:|r|≥8

|ar|2 ·
∫

A(r)
min

{
1

π2(α1r1 + α2r2)2
, T 2

}

ds

=
∑

r∈Z
2:|r|≥8

|ar|2
L(r)∑

�=−1

∫

A�(r)
min

{
1

π2(α1r1 + α2r2)2
, T 2

}

ds

≤
∑

r∈Z
2:|r|≥8

|ar|2
L(r)∑

�=−1

measure(A�(r)) · min

{
4�+1

π2
, T 2

}

≤
∑

r∈Z
2:|r|≥8

|ar|2
(

L(r)∑

�=0

4

(
1

|r| · 2�
+ 1

|r|2 · 4�

)

min

{
4�+1

π2
, T 2

}

+ 2π · 1

π2

)

, (6.29)
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where in the last step we used (6.28); the last term in (6.29) is a trivial bound for the special
case � = −1 in the summation; and finally, L(r) is defined in (6.24).

To estimate (6.29), we need some rather long but totally routine calculations. For any
r ∈ Z

2 with |r| ≥ 8, we have (δ is a 0-1 valued indicator function to be defined below)

L(r)∑

�=0

(
1

|r| · 2�
+ 1

|r|2 · 4�

)

min

{
4�+1

π2
, T 2

}

= 1

|r|
L(r)∑

�=0

min

{
2�+2

π2
,
T 2

2�

}

+ 1

|r|2
L(r)∑

�=0

min

{
4

π2
,
T 2

4�

}

≤ 1

|r|
∑

0≤�≤L(r):
2�+1≤πT

2�+2

π2
+ T 2

|r|
∑

0≤�≤L(r):
2�+1>πT

2−� + log2 T

|r|2

≤ 1

|r| · 8

π2
min

{
2L(r), πT /2

}+ T 2

|r| · 2δ
(
2L(r) ≥ πT/2

) · 2

πT
+ log2 T

|r|2 , (6.30)

where δ(2L(r) ≥ πT/2) = 1 if 2L(r) ≥ πT/2 and δ(2L(r) ≥ πT/2) = 0 if 2L(r) < πT/2.
By (6.24), if 2L(r) < πT/2 then

1

|r| · 8

π2
min

{
2L(r), πT /2

}+ T 2

|r| · 2δ
(
2L(r) ≥ πT/2

) · 2

πT

= 8

π2
· 40

ε
· log2 |r| · (log2 log2 |r|)2, (6.31)

and if 2L(r) ≥ πT/2 then

1

|r| · 8

π2
min

{
2L(r), πT /2

}+ T 2

|r| · 2δ
(
2L(r) ≥ πT/2

) · 2

πT

= 4T

π |r| + 4T

π |r| = 8T

π |r| . (6.32)

If 2L(r) < πT/2 and |r| ≥ 8 then of course

log2 |r| < L(r) < log2(πT ),

and so the last term in (6.31) can be estimated from above as follows:

8

π2
· 40

ε
· log2 |r| · (log2 log2 |r|)2 <

8

π2
· 40

ε
log2(πT ) · (log2 log2(πT ))2. (6.33)

On the other hand, if we have the equality

πT/2 = 2L(r) = 40

ε
|r| · log2 |r| · (log2 log2 |r|)2 and |r| ≥ 8, (6.34)

then clearly

T

|r| = 2

π
· 40

ε
· log2 |r| · (log2 log2 |r|)2 ≤ 2

π
· 40

ε
· log2 T · (log2 log2 T )2, (6.35)
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and (6.35) remains true if we go beyond the equality (6.34) to the whole range 2L(r) ≥ πT/2.
Summarizing, by (6.30)–(6.35) for any r ∈ Z

2 with |r| ≥ 8 we have

L(r)∑

�=0

(
1

|r| · 2�
+ 1

|r|2 · 4�

)

min

{
4�+1

π2
, T 2

}

≤ 16

π2
· 41

ε
log2 T · (log2 log2 T )2. (6.36)

Applying (6.36) in (6.29), we obtain

∑

r∈Z
2:|r|≥8

|ar|2 ·
∫

A(r)
min

{
1

π2(α1r1 + α2r2)2
, T 2

}

ds

≤
∑

r∈Z
2:|r|≥8

|ar|2 · 64

π2
· 42

ε
log2 T · (log2 log2 T )2. (6.37)

Similarly,

∑

r∈Z
2:

1≤|r|<8

|ar|2 ·
∫

A(r)
min

{
1

π2(α1r1 + α2r2)2
, T 2

}

ds

≤
∑

r∈Z
2:|r|≥8

|ar|2 · 64

π2
· 42

ε
. (6.38)

Returning to (6.19)–(6.27), and using (6.37)–(6.38),

1

2π

∫

A

(∫

I2
(A(T ;y, (α1, α2)) − T · area(A))2 dy

)

ds

≤
∑

r∈Z
2:|r|≥8

|ar|2 · 1344

π3
· 1

ε
· log2 T · (log2 log2 T )2 +

∑

r∈Z
2:

1≤|r|<8

|ar|2 · 1344

π3
· 1

ε

≤
∑

r∈Z
2:

r �=0

|ar|2 · 1344

π3
· 1

ε
log2 T · (log2 log2 T )2

= area(A)(1 − area(A)) · 1344

π3
· 1

ε
log2 T · (log2 log2 T )2, (6.39)

where in the last step we used (6.2). Equation (6.39) gives Lemma 6.2. �

Now we are ready to finish the proof of Theorem 4: we just throw out the “bad” initial
conditions and apply Chebyshev’s inequality. First a definition: for any λ > 0 let

�(λ) = {
(y, (α1, α2)) ∈ [0,1)2 × A : |A(T ;y, (α1, α2)) − T · area(A)| ≥ λ

}
. (6.40)
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Combining (6.39)–(6.40) with Chebyshev’s inequality,

1

2π
measure(�(λ)) ≤ area(A)(1 − area(A)) · 1344

π3
· 1

ε
log2 T · (log2 log2 T )2 · λ−2, (6.41)

where “measure” stands for the 3-dimensional Lebesgue measure.
By making the choice

λ = λ0 = 10
√

area(A)(1 − area(A))

ε

√
log2 T · log2 log2 T (6.42)

in (6.41), we conclude

1

2π
measure(�(λ0)) ≤ ε

2
. (6.43)

If we throw out the set of initial conditions (starting point and angle) (y, (α1, α2)) con-
tained in �(λ0), and also throw out those initial conditions (y, (α1, α2)) for which the an-
gle (α1, α2) is ε-bad (i.e., (α1, α2) ∈ B), then by (6.43) and Lemma 6.1 the total loss is
≤ ε/2 + ε/2 = ε. Combining this fact with (6.42)–(6.43), Theorem 4 follows.

Now we return to the long proof of Theorem 1.

7 Proof of Theorem 1: The Simplest Simultaneous Case

Let j, k be arbitrary integers with 1 ≤ j < k ≤ N , and let

Aj,k(T ) = Aj,k(T ;yj ,uj ;yk,uk)

denote the total time between 0 < t < T when the j th torus-line xj (t) and the kth torus-line
xk(t) are both in subset A simultaneously; in other words, when the two torus lines are in A

at the same time.
The key observation is that we can describe Aj,k(T ) in terms of the Cartesian product

A × A ⊂ I 6 = [0,1]6 of A ⊂ I 3 with itself. Indeed, we have

Aj,k(T ) = Aj,k(T ;yj ,uj ;yk,uk)

= measure
{
t ∈ [0, T ] : xj (t) ∈ A (mod 1) and xk(t) ∈ A (mod 1)

}

=
∫ T

0
χA(xj (t))χA(xk(t)) dt =

∫ T

0
χA×A(xj (t),xk(t)) dt, (7.1)

where χA×A is the 0-1 valued characteristic function of A × A ⊂ I 6. Write B = A × A; we
need the Fourier series of the characteristic function χB = χA×A:

χB(w) = χA×A(w) =
∑

r∈Z6

bre
2π ir·w with br =

∫

A×A

e−2π ir·z dz, (7.2)

where r · w = r1w1 + · · · + r6w6 denotes the standard inner product. Clearly b0 = vol(A ×
A) = vol2(A) (= the volume of A × A), and by Parseval’s formula,

∑

r∈Z
6:

r �=0

|br|2 = vol2(A) − vol4(A), (7.3)
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which is the analog of (5.3). Let’s return to (7.1): by using the Fourier series (7.2), we have

Aj,k(T ) = Aj,k(T ;yj ,uj ;yk,uk)

=
∫ T

0

∑

r∈Z6

bre
2π ir·(xj (t),xk(t)) dt

=
∑

r∈Z6

br

∫ T

0
e2π ir·(xj (t),xk(t)) dt =

∑

r∈Z6

bre
2π ir·(yj ,yk)

∫ T

0
e2π i(r·(uj ,uk))vt dt

= b0T +
∑

r∈Z
6:

r �=0

bre
2π ir·(yj ,yk) · e2π i(r·(uj ,uk))vT − 1

2π i(r · (uj ,uk))v
. (7.4)

To clarify the notation here, note that (say) (yj ,yk) means a 6-dimensional vector for which
the first 3 coordinates are given by yj and the last 3 coordinates are given by yk .

Let M be an arbitrary integer in the range 1 ≤ M ≤ N/2, and consider the double sum

F1,2 = F1,2(yj ,uj : 1 ≤ j ≤ M;yk,uk : M + 1 ≤ k ≤ 2M)

=
M∑

j=1

2M∑

k=M+1

(
1

T
Aj,k(T ) − vol2(A)

)

=
M∑

j=1

2M∑

k=M+1

1

T

∫ T

0
χA(xj (t))χA(xk(t)) dt − M2 · vol2(A)

= E1,2 − M2 · vol2(A), (7.5)

where

E1,2 = 1

T

∫ T

0
Z1(t)Z2(t) dt,

Z1(t) =
M∑

j=1

χA(xj (t)) and Z2(t) =
2M∑

k=M+1

χA(xk(t)).

By (7.4) we have

F1,2 =
M∑

j=1

2M∑

k=M+1

∑

r∈Z
6:

r �=0

bre
2π ir·(yj ,yk) · e2π i(r·(uj ,uk))vT − 1

2π i(r · (uj ,uk))v
. (7.6)

Fix the 2M unit vectors uj ∈ S2, j = 1,2, . . . ,M and uk ∈ S2, k = M + 1,M + 2, . . . ,2M ,
and evaluate the square integral

∑

1,2
=
∫

I3
. . .

∫

I3

(
F1,2(yj ,uj : 1 ≤ j ≤ M;yk,uk : M + 1 ≤ k ≤ 2M)

)2
dy1 . . . dy2M.

(7.7)
Note that (7.7) is a multiple integral, which consists of 2M single integrals.
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To evaluate (7.7), we multiply out the square F 2
1,2 (where for F1,2 we use (7.6)) and apply

some orthogonality relations, leading to huge cancellations. To understand the cancellations,
we study the following sub-problem: When does the multiple integral

Int(r1, j1, k1; r2, j2, k2)

=
∫

I3
. . .

∫

I3
e2π i(r1·(yj1 ,yk1 )−r2·(yj2 ,yk2 )) dyj1 . . . dyk2 , (7.8)

where r1, r2 ∈ Z
6 \ 0 and 1 ≤ j1, j2 ≤ M < k1, k2 ≤ 2M , equal to zero?

Well, the first challenge is that the integral (7.8) can be a double, or a triple, or a quadruple
integral; it depends on whether the index set {j1, j2, k1, k2} consists of 2 or 3 or 4 different
integers. Accordingly, we distinguish three cases.

Case 1: quadruple integral: j1 �= j2 and k1 �= k2

Then clearly

Int(r1, j1, k1; r2, j2, k2) = 0.

Case 2: triple integral: either j1 = j2 and k1 �= k2, or j1 �= j2 and k1 = k2

Then with r1 = (r1,1, r1,2) and r2 = (r2,1, r2,2),

Int(r1, j1, k1; r2, j2, k2)

=
∫

I3

∫

I3

(∫

I3
e2π i(r1,1−r2,1)·yj1 dyj1

)

e2π i(r1,2·yk1 −r2,2·yk2 ) dyk1 dyk2 ,

and this integral is always 0, unless r1,1 = r2,1 and r1,2 = r2,2 = (0,0,0), and then of course
the integral is 1. Similar result holds for the other case j1 �= j2 and k1 = k2. Therefore,
Case 2 gives non-zero contribution (namely, one) if and only if r1 = r2 and either the first 3
coordinates are zero, or the last three coordinates are zero.

Case 3: double integral: j1 = j2 and k1 = k2

Then

Int(r1, j1, k1; r2, j2, k2) =
∫

I6
e2π i(r1−r2)·y dy,

which is always 0, unless r1 = r2.
Now we are ready to evaluate

∑
1,2 (see (7.7)): squaring (7.6) and applying Cases 1–3

above, we obtain

∑

1,2
=
∑

1,2
(uj : 1 ≤ j ≤ M;uk : M + 1 ≤ k ≤ 2M)

=
∑

r∈Z
6:

r �=0

|br|2 ·
M∑

j=1

2M∑

k=M+1

∣
∣
∣
∣
e2π i(r·(uj ,uk))vT − 1

2π(r · (uj ,uk))vT

∣
∣
∣
∣

2

+
∑

r=(r1,0)∈Z
6:

r1∈Z
3\0

|br|2 ·
M∑

j=1

2M∑

k1=M+1

2M∑

k2=M+1

∣
∣
∣
∣
e2π i(r1·uj )vT − 1

2π(r1 · uj )vT

∣
∣
∣
∣

2
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+
∑

r=(0,r2)∈Z
6:

r2∈Z
3\0

|br|2 ·
M∑

j1=1

M∑

j2=1

2M∑

k=M+1

∣
∣
∣
∣
e2π i(r2·uk)vT − 1

2π(r2 · uk)vT

∣
∣
∣
∣

2

. (7.9)

Next we integrate
∑

1,2 over the 2M direction vectors uj ∈ S2, j = 1,2, . . . ,M and uk ∈
S2, k = M + 1,M + 2, . . . ,2M (this is another multiple integral consisting of 2M single
integrals):

∑∗
1,2

= (4π)−2M

∫

S2
. . .

∫

S2

∑

1,2
(uj ,uk : 1 ≤ j ≤ M,M + 1 ≤ k ≤ 2M)du1 . . . du2M.

(7.10)
Let’s return to the first sum in (7.9): we have the obvious upper bound

∣
∣
∣
∣
e2π i(r·(uj ,uk))vT − 1

2π(r · (uj ,uk))vT

∣
∣
∣
∣≤ min

{
1

π |r · (uj ,uk)|vT
,1

}

. (7.11)

We need to estimate the integral

(4π)−2
∫

S2

∫

S2
min

{
1

(πr · (uj ,uk)vT )2
,1

}

duj duk. (7.12)

By (5.12)–(5.13), for any real numbers c1 < c2 we have,

SurfaceArea
({

u ∈ S2 : c1 ≤ r · u ≤ c2
})= 4π · min{c2, r} − max{c1,−r}

r
, (7.13)

where r = |r| and r ∈ Z
3 \ 0.

Now let r ∈ Z
6 \ 0, and write r = (r1, r2); then clearly r1 ∈ Z

3 \ 0 or r2 ∈ Z
3 \ 0. Suppose

that (say) r1 ∈ Z
3 \ 0; then we can estimate the integral in (7.12) as follows:

(4π)−2
∫

S2

∫

S2
min

{
1

(πr · (uj ,uk)vT )2
,1

}

duj duk

= (4π)−2
∫

S2

(∫

S2
min

{
1

(π(r1 · uj + r2 · uk)vT )2
,1

}

duj

)

duk. (7.14)

For any fixed value of uk , the inner integral in (7.14) can be estimated from above by repeat-
ing the argument in (5.14)–(5.15) and using (7.13): with c0 = r2 · uk we have

∫

S2
min

{
1

(π(r1 · uj + c0)vT )2
,1

}

duj ≤ 2

πvT |r1| , (7.15)

and using it in (7.14), we obtain

(4π)−2
∫

S2

∫

S2
min

{
1

(πr · (uj ,uk)vT )2
,1

}

duj duk ≤ 2

πvT |r1| . (7.16)

Let’s return to (7.9)–(7.10). By using (7.11) and (7.16), we have

(4π)−2M

∫

S2
. . .

∫

S2

∑

r∈Z
6:

r �=0

|br|2 ·
M∑

j=1

2M∑

k=M+1

∣
∣
∣
∣
e2π i(r·(uj ,uk))vT − 1

2π(r · (uj ,uk))vT

∣
∣
∣
∣

2

du1 . . . du2M
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≤ (4π)−2M

∫

S2
. . .

∫

S2

∑

r∈Z
6:

r �=0

|br|2 ·
M∑

j=1

2M∑

k=M+1

min

{
1

(πr · (uj ,uk)vT )2
,1

}

du1 . . . du2M

≤ 2

πvT
· M2

∑

r∈Z
6:

r �=0

|br|2 ≤ 2

πvT
· M2 · vol2(A), (7.17)

where in the last step we used (7.3). This settles the contribution of first one of the three big
sums on the right hand side of (7.9).

Next we deal with the second big sum on the right hand side of (7.9). By repeating the
argument of (5.14)–(5.15), we have

(4π)−2M

∫

S2
. . .

∫

S2

∑

r=(r1,0)∈Z
6:

r1∈Z
3\0

M∑

j=1

2M∑

k1=M+1

2M∑

k2=M+1

|br|2 ·
∣
∣
∣
∣
e2π i(r1·uj )vT − 1

2π(r1 · uj )vT

∣
∣
∣
∣

2

du1 . . . du2M

≤ (4π)−2M

∫

S2
. . .

∫

S2

∑

r∈Z
6:

r �=0

M∑

j=1

2M∑

k=M+1

|br|2 · min

{
1

(π(r1 · uj )vT )2
,1

}

du1 . . . du2M

≤ 2

πvT
· M3

∑

r=(r1,0)∈Z
6:

r1∈Z
3\0

|br|2. (7.18)

A Key Technical Detail Note that for any r = (r1,0) ∈ Z
6 with r1 ∈ Z

3 \ 0,

br =
∫

A×A

e−2π ir·z dz

= vol(A)

∫

A

e−2π ir1·w dw = vol(A) · ar1 , (7.19)

where ar1 is defined in (5.2). Therefore, by (5.3),

∑

r=(r1,0)∈Z
6:

r1∈Z
3\0

|br|2 = vol2(A)
∑

r1∈Z3\0

|ar1 |2 ≤ vol3(A). (7.20)

Since vol(A) is very small, it is absolutely crucial that in (7.20) we got the cube of the
volume (instead of the trivial upper bound vol(A × A) = vol2(A)).

Of course, the same argument works for the third big sum on the right hand side of (7.9).
Summarizing, by (7.9)–(7.10) and (7.17)–(7.20), we obtain the following analog of

Lemma 5.1.
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Lemma 7.1 We have

∑∗
1,2

≤ 2

πvT
· (M2 · vol2(A) + 2M3 · vol3(A)

)
, (7.21)

where the square-integral
∑∗

1,2 (see (7.5), (7.7), (7.10)) equals the multiple integral

(4π)−2M

∫

I3
. . .

∫

I3

∫

S2
. . .

∫

S2

(
M∑

j=1

2M∑

k=M+1

(
1

T
Aj,k(T ;yj ,uj ;yk,uk) − vol2(A)

))2

dy1 . . . dy2M du1 . . . du2M,

(7.22)

which consists of 4M single integrals.

Again we interrupt the proof of Theorem 1.

8 Proving Theorems 2 and 3

8.1 Proof of Theorem 2

We follow the notation introduced in Sects. 1–7. Again we use the geometric trick of un-
folding the billiard paths to straight lines in the 3-space, so it suffices to deal with N torus
lines xk(t) = (xk,1(t), xk,2(t), xk,3(t)) (mod 1), k = 1,2, . . . ,N where

xk,1(t) = uk,1tv + yk,1, xk,2(t) = uk,2tv + yk,2, xk,3(t) = uk,3tv + yk,3

and

u2
k,1 + u2

k,2 + u2
k,3 = 1,

i.e., uk = (uk,1, uk,2, uk,3) is a unit vector (v ≥ 1 is the common speed of the particles).
Let A ⊂ I 3 = [0,1)3 be an arbitrary Lebesgue measurable subset (via unfolding it corre-

sponds to the union of 8 copies of the given subset in Theorem 2; we shrink the correspond-
ing 2 × 2 × 2 cube to the unit cube).

To prove Theorem 2 we use the second moment method: we want to give a “good” upper
bound for the square integral

(4π)−N

∫

�

(∫ T

0
(YA(ω; t) − N · vol(A))2 dt

)2

dω.

Let

ω = (y1, . . . ,yN,u1, . . . ,uN) ∈ (
I 3
)N × (

S2
)N = �

be an arbitrary initial condition, and we start with the equality

∫ T

0
(YA(ω; t) − N · vol(A))2 dt
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=
∫ T

0

(
N∑

k=1

(χA(xk(ω; t)) − vol(A))

)2

dt

= 2
∑(1)

(ω;T ) − 2(N − 1) · vol(A) ·
∑(2)

(ω;T ) +
∑(3)

(ω;T ), (8.1)

where

∑(1)

(ω;T ) =
∫ T

0

∑

1≤j<k≤N

(
χA(xj (ω; t))χA(xk(ω; t)) − vol2(A)

)
dt, (8.2)

∑(2)

(ω;T ) =
∫ T

0

N∑

k=1

(χA(xk(ω; t)) − vol(A)) dt, (8.3)

and

∑(3)

(ω;T ) =
∫ T

0

N∑

k=1

(χA(xk(ω; t)) − vol(A))2 dt. (8.4)

For
∑(2)

(ω;T ) we apply Lemma 5.1 with M = N : since

∑(2)

(ω;T ) =
N∑

k=1

(Ak(T ;yk,uk) − T · vol(A)) ,

by Lemma 5.1 we have

(4π)−N

∫

�

(∑(2)

(ω;T )

)2

dω ≤ T N · vol(A)

v
. (8.5)

For
∑(1)

(ω;T ) we start with the obvious equality

∑(1)

(ω;T ) =
∑

1≤j<k≤N

(
Aj,k(T ;yj ,uj ;yk,uk) − T · vol2(A)

)
,

which leads us to Lemma 7.1. Unfortunately, we cannot directly apply Lemma 7.1. Instead
we repeat the whole proof: thus we obtain the following result, which is just a slightly
modified version of Lemma 7.1:

(4π)−N

∫

�

(∑(1)

(ω;T )

)2

dω ≤ T

v

(
N2 · vol2(A) + N3 · vol3(A)

)
. (8.6)

We also need the following well-known inequality: for any real numbers C1,C2,C3,

(C1 + C2 + C3)
2 ≤ 3

(
C2

1 + C2
2 + C2

3

)
. (8.7)

Combining (8.1)–(8.7), we have

(4π)−N

∫

�

(∫ T

0
(YA(ω; t) − N · vol(A))2 dt

)2

dω
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≤ 3 · (4π)−N

∫

�

(∑(3)

(ω;T )

)2

dω

+ 3

(

4N2 · vol2(A)
T N · vol(A)

v
+ 4

T

v

(
N2 · vol2(A) + N3 · vol3(A)

)
)

. (8.8)

To estimate the term

(4π)−N

∫

�

(∑(3)

(ω;T )

)2

dω

in (8.8), we first go back to (8.4), and apply the trivial inequality

(χ − V )2 ≤ 2χ2 + 2V 2 ≤ 2χ + V 2 if χ = 1,0

twice:
(∑(3)

(ω;T )

)2

≤
(

2
N∑

k=1

Ak(T ;ω) + 2NT · vol2(A)

)2

= 4

((
N∑

k=1

Ak(T ;ω) − NT · vol(A)

)

+ NT · (vol(A) + vol2(A))

)2

≤ 8

(
N∑

k=1

Ak(T ;ω) − NT · vol(A)

)2

+ 8N2T 2 · (vol(A) + vol2(A))2.

Thus we have

(4π)−N

∫

�

(∑(3)

(ω;T )

)2

dω

≤ 8 · (4π)−N

∫

�

(
N∑

k=1

Ak(T ;ω) − NT · vol(A)

)2

dω

+ 8N2T 2 · (vol(A) + vol2(A))2

≤ 8NT · vol(A)

v
+ 8N2T 2 · (vol(A) + vol2(A))2, (8.9)

where in the last line of (8.9) we applied (8.5) (i.e., Lemma 5.1).
Using (8.9) in (8.8), we have

(4π)−N

∫

�

(∫ T

0
(YA(ω; t) − N · vol(A))2 dt

)2

dω

≤ 3 ·
(

8NT · vol(A)

v
+ 8N2T 2 · (vol(A) + vol2(A))2

)

+ 3

(

4N2 · vol2(A)
T N · vol(A)

v
+ 4

T

v

(
N2 · vol2(A) + N3 · vol3(A)

)
)
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≤ 12T 2N2 · vol2(A)

(
2

vT N · vol(A)
+ 8 + 1 + 2N · vol(A)

vT

)

. (8.10)

Let 0 < ε < 1 be arbitrary. It follows from (8.10) that there is a (measurable) subset
�(ε;T ;bad) of � such that,

measure(�(ε;T ;bad)) < ε · measure(�), (8.11)

and for all

ω ∈ � \ �(ε;T ;bad), (8.12)
∫ T

0
(YA(ω; t) − N · vol(A))2 dt

≤ 2

√
3

ε
· T N · vol(A)

(
2

vT N · vol(A)
+ 8 + 1 + 2N · vol(A)

vT

)1/2

. (8.13)

Similarly, by (8.13) we have for any η > 0,

1

T
measure{0 ≤ t ≤ T : |YA(ω; t) − N · vol(A)| > ηN · vol(A)}

<
2

η2N · vol(A)

√
3

ε

(
2

vT N · vol(A)
+ 8 + 1 + 2N · vol(A)

vT

)1/2

. (8.14)

Finally, note that (8.14) completes the proof of Theorem 2.

8.2 Proof of Theorem 3

Similarly to Theorem 2, our approach is based on the second moment method. For conve-
nience I introduce the notation Ĩ = [0,1/2], so [0,1/2]3 = Ĩ 3. Our basic assumption is that
the initial conditions

ω = (y1, . . . ,yN,u1, . . . ,uN) (8.15)

are uniformly distributed in the product set

([0,1/2]3
)N × (

S2
)N =

(
Ĩ 3
)N × (

S2
)N = �̃, (8.16)

which is 8−N part of the whole space �. The second moment method means that we want
to give a “good” upper bound for the square integral

(
2

π

)N ∫

�̃

(∫ T

0
(YA(ω; t) − N · vol(A))2 dt

)2

dω, (8.17)

where 2/π comes from the ratio of 8 and 4π (here 4π is the surface area of the unit sphere
S2 and 1/8 is the volume of the octant [0,1/2]3 = Ĩ 3).

Again we use (8.1)–(8.4): let

ω = (y1, . . . ,yN,u1, . . . ,uN) ∈ �̃ (8.18)
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be an arbitrary “jammed” initial condition, and we use the equality

∫ T

0
(YA(ω; t) − N · vol(A))2 dt

=
∫ T

0

(
N∑

k=1

(χA(xk(ω; t)) − vol(A))

)2

dt

= 2
∑(1)

(ω;T ) − 2(N − 1) · vol(A) ·
∑(2)

(ω;T ) +
∑(3)

(ω;T ), (8.19)

where

∑(1)

(ω;T ) =
∫ T

0

∑

1≤j<k≤N

(
χA(xj (ω; t))χA(xk(ω; t)) − vol2(A)

)
dt, (8.20)

∑(2)

(ω;T ) =
∫ T

0

N∑

k=1

(χA(xk(ω; t)) − vol(A)) dt, (8.21)

and

∑(3)

(ω;T ) =
∫ T

0

N∑

k=1

(χA(xk(ω; t)) − vol(A))2 dt. (8.22)

For
∑(3)

(ω;T ) it suffices to use the trivial bound

0 ≤
∑(3)

(ω;T ) ≤ NT, (8.23)

which holds for all ω ∈ � and all T > 0.
Since our subspace �̃ is just a tiny part of � (namely, �̃ is 8−N part of �), we cannot

directly apply Lemma 5.1 or Lemma 7.1 (i.e., we cannot simply repeat the proof of Theo-
rem 2). Instead, we are going to develop a corresponding analog for both Lemma 5.1 and
Lemma 7.1. The first step is to prove an

Analog of Lemma 5.1 I begin with recalling (5.2)–(5.6). As usual, we apply the geometric
trick of unfolding the billiard paths to straight lines in the 3-space, and so it suffices to deal
with N torus lines xk(t) = (xk,1(t), xk,2(t), xk,3(t)) (mod 1), k = 1,2, . . . ,N where

xk,1(t) = uk,1tv + yk,1, xk,2(t) = uk,2tv + yk,2, xk,3(t) = uk,3tv + yk,3

and

u2
k,1 + u2

k,2 + u2
k,3 = 1,

i.e., uk = (uk,1, uk,2, uk,3) is a unit vector (v ≥ 1 is the common speed).
Let A ⊂ I 3 = [0,1)3 be an arbitrary Lebesgue measurable subset (via unfolding it corre-

sponds to the union of 8 copies of the given subset; we shrink the corresponding 2 × 2 × 2
cube to the unit cube). We work with the Fourier series of the 0-1-valued characteristic
function χA of A ⊂ I 3 = [0,1)3:

χA(w) =
∑

r∈Z3

are
2π ir·w with ar =

∫

A

e−2π ir·z dz. (8.24)
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Clearly a0 = vol(A), and by Parseval’s formula,

∑

r∈Z
3:

r �=0

|ar|2 =
∫

I3
χ2

A(w) dw − |a0|2 = vol(A) − vol2(A). (8.25)

Given a real number T ≥ 1, we denote the total time that the kth torus-line xk(t) (represent-
ing the kth point-billiard) spends in subset A during 0 < t < T by Ak(T ) = Ak(T ;yk,uk):
we have

Ak(T ) = Ak(T ;yk,uk) = measure {t ∈ [0, T ] : xk(t) ∈ A (mod 1)}

=
∫ T

0
χA(xk(t)) dt =

∫ T

0

∑

r∈Z3

are
2π ir·xk(t) dt

= a0T +
∑

r∈Z
3:

r �=0

are
2π ir·yk · e2π i(r·uk)vT − 1

2π i(r · uk)v
. (8.26)

Let

FN = FN(yk,uk : 1 ≤ k ≤ N) =
N∑

k=1

(
1

T
Ak(T ;yk,uk) − vol(A)

)

. (8.27)

Fix the N unit vectors uk ∈ S2, 1 ≤ k ≤ N , and evaluate the square integral

∑̃

1
(uk : 1 ≤ k ≤ N) =

∫

Ĩ3
. . .

∫

Ĩ3
(FN(yk,uk : 1 ≤ k ≤ N))2 dy1 . . . dyN . (8.28)

Note that (8.28) is a multiple integral, which consists of N single integrals.
To evaluate (8.28), we multiply out the square F 2

N , where the sum FN is defined in (8.26)–
(8.27). The orthogonality relations (5.7)–(5.8) fail for the half Ĩ = [0,1/2] of the unit inter-
val. Instead we use the following elementary fact: for r ∈ Z \ 0 we have

1

|Ĩ |
∫

Ĩ

e2π iry dy = 2
∫ 1/2

0
e2π iry dy = 2i

πr
or 0, (8.29)

depending on whether r is odd or even. Now let r = (r1, r2, r3) ∈ Z
3 \ 0, then

1

vol(Ĩ 3)

∫

Ĩ3
e2π ir·y dy =

3∏

j=1

(
2i

πrj

or 0 or 1

)

, (8.30)

where the three cases indicated in (8.30) depend on whether rj �= 0 is odd or rj �= 0 is even
or rj = 0 (j = 1,2,3).

It is convenient to introduce the following new notation:

�(r) =
d∏

j=1

1

max{|rj |,1} (8.31)

for any real vector r = (r1, . . . , rd) of any dimension d ≥ 1.
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By (8.30)–(8.31) we have

1

vol(Ĩ 3)

∣
∣
∣
∣

∫

Ĩ3
e2π ir·y dy

∣
∣
∣
∣≤ �(r) (8.32)

for all r ∈ Z
3. We consider (8.32) an “analog” of (5.8).

The following corollary of (8.32) is considered a similar “analog” of (5.7):

1

vol2(Ĩ 3)

∣
∣
∣
∣

∫

Ĩ3

∫

Ĩ3
e2π i(r1·yj −r2·yk) dyj dyk

∣
∣
∣
∣≤ �(r1)�(r2), (8.33)

which holds for any r1, r2 ∈ Z
3 \ 0 and j �= k.

By using (8.32)–(8.33) instead of (5.7)–(5.8), we obtain the following (much longer!)
“analog” of (5.9):

∑̃

1
=
∑̃

1
(uk : 1 ≤ k ≤ N)

≤
∑̃

1
(1) +

∑̃

1
(2) +

∑̃

1
(3), (8.34)

where

∑̃

1
(1) =

∑

r1∈Z
3:

r1 �=0

∑

r2∈Z
3:

r2 �=0

N∑

j=1

N∑

k=1:
k �=j

|ar1 |

· �(r1) · |ar2 | · �(r2) ·
∣
∣
∣
∣
e2π i(r1·uj )vT − 1

2π(r1 · uj )vT

∣
∣
∣
∣ ·
∣
∣
∣
∣
e2π i(r2·uk)vT − 1

2π(r2 · uk)vT

∣
∣
∣
∣ , (8.35)

∑̃

1
(2) =

∑

r1∈Z
3:

r1 �=0

∑

r2∈Z
3:

r2 /∈{0,r1}

N∑

k=1

|ar1 | · |ar2 |

· �(r1 − r2) ·
∣
∣
∣
∣
e2π i(r1·uk)vT − 1

2π(r1 · uk)vT

∣
∣
∣
∣ ·
∣
∣
∣
∣
e2π i(r2·uk)vT − 1

2π(r2 · uk)vT

∣
∣
∣
∣ , (8.36)

and finally,
∑̃

1(3) is (5.9):

∑̃

1
(3) =

∑

r∈Z
3:

r �=0

|ar|2 ·
N∑

k=1

∣
∣
∣
∣
e2π i(r·uk)vT − 1

2π(r · uk)vT

∣
∣
∣
∣

2

. (8.37)

Next we integrate
∑̃

1 over the direction vectors uk ∈ S2, 1 ≤ k ≤ N , which leads to
another multiple integral consisting of N single integrals (to normalize, we have to divide
by 4π = the surface area of the unit sphere S2):

∑̃∗
1
= 1

4π

∫

S2
. . .

1

4π

∫

S2

∑̃

1
(uk : 1 ≤ k ≤ N)du1 . . . duN

≤ (4π)−N

∫

S2
. . .

∫

S2

(∑̃

1
(1) +

∑̃

1
(2) +

∑̃

1
(3)

)
du1 . . . duN
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=
∑̃∗

1
(1) +

∑̃∗
1
(2) +

∑̃∗
1
(3), (8.38)

where for i = 1,2,3,

∑̃∗
1
(i) = (4π)−N

∫

S2
. . .

∫

S2

∑̃

1
(i) du1 . . . duN .

Again we use the trivial inequality (5.11):
∣
∣
∣
∣
e2π i(r·u)vT − 1

2π(r · u)vT

∣
∣
∣
∣≤ min

{
1

π |r · u|vT
,1

}

. (8.39)

Repeating the arguments in (5.12)–(5.15), we have with δ(r) = (πvT |r|)−1,

1

4π

∫

S2
min

{
1

π |r · u|vT
,1

}

du

= δ(r) + δ(r)
∫ 1

δ(r)

dx

x
= δ(r) + δ(r) log

(
1

δ(r)

)

= 1 + log(πvT |r|)
πvT |r| . (8.40)

By (8.35), (8.38)–(8.40) we have

∑̃∗
1
(1) ≤ N2

⎛

⎜
⎜
⎝

∑

r∈Z
3:

r �=0

|ar| · �(r) · 1 + log(πvT |r|)
πvT |r|

⎞

⎟
⎟
⎠

2

≤ N2 ·
(

log(vT )

vT

)2

·

⎛

⎜
⎜
⎝

∑

r∈Z
3:

r �=0

|ar|2
⎞

⎟
⎟
⎠

·
(
∑

r∈Z
3:

r �=0

�2(r) ·
(

1 + log |r|
|r|

)2
)

, (8.41)

where in the last step we used the Cauchy–Schwarz inequality. By (8.25) (Parseval’s for-
mula):

∑

r∈Z
3:

r �=0

|ar|2 ≤ vol(A). (8.42)

Furthermore, by using the definition of �(r) (see (8.31)), we have the upper bound

∑

r∈Z
3:

r �=0

�2(r) ·
(

1 + log |r|
|r|

)2

≤
∑

r∈Z
3:

r �=0

�2(r)
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≤
(
∑

r∈Z

1

max{r2,1}

)3

=
(

1 + 2
∞∑

r=1

1

r2

)3

=
(

1 + 2 · π2

6

)3

< 100. (8.43)

Combining (8.41)–(8.43), we obtain

∑̃∗
1
(1) ≤ 100N2 · vol(A) ·

(
log(vT )

vT

)2

. (8.44)

Next we study
∑̃∗

1(2). We need the following upper bound based on the Cauchy–Schwarz
inequality for integrals of functions (we assume r1 �= 0 �= r2):

1

4π

∫

S2
min

{
1

π |r1 · u|vT
,1

}

· min

{
1

π |r2 · u|vT
,1

}

du

≤
(

1

4π

∫

S2
min

{
1

(π |r1 · u|vT )2
,1

}

du
)1/2

·
(

1

4π

∫

S2
min

{
1

(π |r2 · u|vT )2
,1

}

du
)1/2

≤
(

2

πvT

)

· (|r1| · |r2|)−1/2, (8.45)

where in the last step we used (5.15).
By (8.36), (8.38)–(8.39) and (8.45) we have

∑̃∗
1
(2) ≤ N ·

(
2

πvT

)

·
∑

r1∈Z
3:

r1 �=0

∑

r2∈Z
3:

r2 /∈{0,r1}

|ar1 | · |ar2 | · �(r1 − r2) · (|r1| · |r2|)−1/2. (8.46)

Using the simple inequality

|ar1 | · |ar2 | ≤
|ar1 |2 + |ar2 |2

2

in (8.46), we have

∑̃∗
1
(2) ≤ N ·

(
2

πvT

)

·
∑

r1∈Z
3:

r1 �=0

∑

r2∈Z
3:

r2 /∈{0,r1}

|ar1 |2 + |ar2 |2
2

· �(r1 − r2) · (|r1| · |r2|)−1/2. (8.47)

We estimate the coefficient of |ar1 |2 in (8.47) as follows (write r3 = r1 − r2):

|ar1 |2 ·

⎛

⎜
⎜
⎝

∑

r2∈Z
3:

r2 /∈{0,r1}

�(r1 − r2) · (|r1| · |r2|)−1/2

⎞

⎟
⎟
⎠

= |ar1 |2 ·

⎛

⎜
⎜
⎝

∑

r3∈Z
3:

r3 /∈{0,−r2}

�(r3) · (|r2 + r3| · |r2|)−1/2

⎞

⎟
⎟
⎠
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≤ |ar1 |2 · √2

(
∑

r∈Z

1

max{|r|7/6,1}

)3

= |ar1 |2 · √2

(

1 + 2
∞∑

r=1

1

r7/6

)3

< 4999|ar1 |2. (8.48)

Note that in (8.48) we used the triangle inequality |r2 + r3| + |r2| ≥ |r3|, which implies
√

2 max{√|r2 + r3|,
√|r2|}

≥√|r3| =
(
r2

3,1 + r2
3,2 + r2

3,3

)1/4 ≥
3∏

j=1

(
max{|r3,j |,1})1/6 = (�(r3))

−1/6 , (8.49)

where r3 = (r3,1, r3,2, r3,3). Inequality (8.49) and (8.31) together clearly justify (8.48).
By (8.47)–(8.48) we have

∑̃∗
1
(2) ≤ N ·

(
2

πvT

)

· 4999
∑

r∈Z
3:

r �=0

|ar|2 ≤ 9998N · vol(A)

πvT
, (8.50)

where in the last step we used (8.42) (i.e., Parseval’s formula).
Finally, for

∑̃∗
1(3) = (5.9) we use (5.16):

∑̃∗
1
(3) ≤ 2N · vol(A)

πvT
. (8.51)

Returning to (8.38), and applying (8.44), (8.50)–(8.51), we have

(
2

π

)N ∫

�̃

(
1

T

∫ T

0

N∑

k=1

(χA(xk(ω; t)) − vol(A)) dt

)2

dω

=
∑̃∗

1
≤
∑̃∗

1
(1) +

∑̃∗
1
(2) +

∑̃∗
1
(3)

≤
(

10N
log(vT )

vT

)2

· vol(A) + 104 · N · vol(A)

πvT
. (8.52)

We consider (8.52) an “analog” of Lemma 5.1.
By (8.21) and (8.52) we obtain the following “analog” of (8.5):

(
2

π

)N ∫

�̃

(∑(2)

(ω;T )

)2

dω

≤
(

10N log(vT )

v

)2

· vol(A) + 104 · T N · vol(A)

πv
. (8.53)

Next we prove an

Analog of Lemma 7.1 As usual, for any integers 1 ≤ j < k ≤ N let

Aj,k(T ) = Aj,k(T ;yj ,uj ;yk,uk)
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denote the total time between 0 < t < T when the j th torus-line xj (t) and the kth torus-line
xk(t) are both in subset A simultaneously. We describe Aj,k(T ) in terms of the Cartesian
product A × A ⊂ I 6 = [0,1]6 of A ⊂ I 3 with itself:

Aj,k(T ) = Aj,k(T ;yj ,uj ;yk,uk)

= measure
{
t ∈ [0, T ] : xj (t) ∈ A (mod 1) and xk(t) ∈ A (mod 1)

}

=
∫ T

0
χA(xj (t))χA(xk(t)) dt =

∫ T

0
χA×A(xj (t),xk(t)) dt, (8.54)

where χA×A is the 0-1 valued characteristic function of A × A ⊂ I 6. Write B = A × A; we
work with the Fourier series of the characteristic function χB = χA×A:

χB(w) = χA×A(w) =
∑

r∈Z6

bre
2π ir·w with br =

∫

A×A

e−2π ir·z dz. (8.55)

Clearly b0 = vol(A × A) = vol2(A), and by Parseval’s formula,
∑

r∈Z
6:

r �=0

|br|2 = vol2(A) − vol4(A). (8.56)

We have

Aj,k(T ) = Aj,k(T ;yj ,uj ;yk,uk)

=
∫ T

0

∑

r∈Z6

bre
2π ir·(xj (t),xk(t)) dt

=
∑

r∈Z6

br

∫ T

0
e2π ir·(xj (t),xk(t)) dt =

∑

r∈Z6

bre
2π ir·(yj ,yk)

∫ T

0
e2π i(r·(uj ,uk))vt dt

= b0T +
∑

r∈Z
6:

r �=0

bre
2π ir·(yj ,yk) · e2π i(r·(uj ,uk))vT − 1

2π i(r · (uj ,uk))v
. (8.57)

As usual, (yj ,yk) means a 6-dimensional vector for which the first 3 coordinates are given
by yj and the last 3 coordinates are given by yk .

Consider the large sum

FN,N = FN,N(yi ,ui : 1 ≤ i ≤ N)

=
∑

1≤j<k≤N

(
1

T
Aj,k(T ) − vol2(A)

)

=
∑

1≤j<k≤N

1

T

∫ T

0
χA(xj (t))χA(xk(t)) dt − M2 · vol2(A). (8.58)

We have

FN,N =
∑

1≤j<k≤N

∑

r∈Z
6:

r �=0

bre
2π ir·(yj ,yk) · e2π i(r·(uj ,uk))vT − 1

2π i(r · (uj ,uk))v
. (8.59)
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Fix the N unit vectors ui ∈ S2, 1 ≤ i ≤ N , and evaluate the square integral

∑̃

1,1
= 8N

∫

Ĩ3
. . .

∫

Ĩ3

(
FN,N(yi ,ui : 1 ≤ i ≤ N)

)2
dy1 . . . dyN, (8.60)

where Ĩ = [0,1/2], and so Ĩ 3 = [0,1/2]3 is the first octant of the unit cube.
To evaluate (8.60), we multiply out the square F 2

N,N , which leads us to the following
sub-problem: we have to estimate the multiple integral

Ĩnt(r1, j1, k1; r2, j2, k2)

= 8
∫

Ĩ3
. . .8

∫

Ĩ3
e2π i(r1·(yj1 ,yk1 )−r2·(yj2 ,yk2 )) dyj1 . . . dyk2 , (8.61)

where r1, r2 ∈ Z
6 \ 0, 1 ≤ j1 < k1 ≤ N and 1 ≤ j2 < k2 ≤ N .

The first challenge is that the integral (8.61) can be a double, or a triple, or a quadruple
integral; it depends on whether the index set {j1, j2, k1, k2} consists of 2 or 3 or 4 different
integers. Accordingly, we distinguish several cases.

Case 1: quadruple integral: j1, k1, j2, k2 are four distinct integers

Then by (8.29),
∣
∣Ĩnt(r1, j1, k1; r2, j2, k2)

∣
∣≤ �(r1)�(r2).

Case 2a: triple integral: j1 = j2 is the only coincidence

Then with r1 = (r1,1, r1,2) and r2 = (r2,1, r2,2),

∣
∣Ĩnt(r1, j1, k1; r2, j2, k2)

∣
∣

= 83

∣
∣
∣
∣

∫

Ĩ3

∫

Ĩ3

(∫

Ĩ3
e2π i(r1,1−r2,1)·yj1 dyj1

)

e2π i(r1,2·yk1 −r2,2·yk2 ) dyk1 dyk2

∣
∣
∣
∣

≤ �(r1,1 − r2,1)�(r1,2)�(r2,2),

and this covers even the extreme case when r1,1 = r2,1 and r1,2 = r2,2 = (0,0,0) (then of
course the integral is 1). Similar result holds for the other cases, such as

Case 2b: triple integral: k1 = j2 is the only coincidence

Then

∣
∣Ĩnt(r1, j1, k1; r2, j2, k2)

∣
∣

≤ �(r1,2 − r2,1)�(r1,1)�(r2,2).

Case 2c: triple integral: j1 = k2 is the only coincidence

Then

∣
∣Ĩnt(r1, j1, k1; r2, j2, k2)

∣
∣

≤ �(r1,1 − r2,2)�(r1,2)�(r2,1).

Case 2d: triple integral: k1 = k2 is the only coincidence
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Then
∣
∣Ĩnt(r1, j1, k1; r2, j2, k2)

∣
∣

≤ �(r1,2 − r2,2)�(r1,1)�(r2,1).

Finally, we have

Case 3: double integral: j1 = j2 and k1 = k2

Then
∣
∣Ĩnt(r1, j1, k1; r2, j2, k2)

∣
∣= 82

∣
∣
∣
∣

∫

Ĩ6
e2π i(r1−r2)·y dy

∣
∣
∣
∣≤ �(r1 − r2),

which covers even the extreme case r1 = r2.
Now we are ready to evaluate

∑̃
1,1 (see (8.60)): squaring (8.59) and applying Cases 1,

2a–2d, 3 above, we obtain

8N

∫

Ĩ3
. . .

∫

Ĩ3

(
FN,N(yi ,ui : 1 ≤ i ≤ N)

)2
dy1 . . . dyN

=
∑̃

1,1

≤
∑̃

1,1
(1) +

∑̃

1,1
(2a) +

∑̃

1,1
(2b)

+
∑̃

1,1
(2c) +

∑̃

1,1
(2d) +

∑̃

1,1
(3), (8.62)

where
∑̃

1,1
(1) =

∑

r1∈Z
6:

r1 �=0

∑

r2∈Z
6:

r2 �=0

∑

1≤j1<k1≤N

∑

1≤j2<k2≤N :
(j2,k2)�=(j1,k1)

|br1 | · �(r1) · |br2 | · �(r2)

·
∣
∣
∣
∣
∣

e2π i(r1·(uj1 ,uk1 ))vT − 1

2π(r1 · (uj1 ,uk1))vT

∣
∣
∣
∣
∣
·
∣
∣
∣
∣
∣

e2π i(r2·(uj2 ,uk2 ))vT − 1

2π(r2 · (uj2 ,uk2))vT

∣
∣
∣
∣
∣
, (8.63)

and
∑̃

1,1
(2a) =

∑

r1=(r1,1,r1,2)∈Z
6:

r1∈Z
6\0

∑

r2=(r2,1,r2,2)∈Z
6:

r2∈Z
6\0

∑

1≤j1<k1≤N

∑

j1<k2≤N :
k2 �=k1

|br1 | · |br2 |

· �(r1,1 − r2,1) · �(r1,2)�(r2,2) ·
∣
∣
∣
∣
∣

e2π i(r1·(uj1 ,uk1 ))vT − 1

2π(r1 · (uj1 ,uk1))vT

∣
∣
∣
∣
∣

·
∣
∣
∣
∣
∣

e2π i(r2·(uj1 ,uk2 ))vT − 1

2π(r2 · (uj1 ,uk2))vT

∣
∣
∣
∣
∣
, (8.64)

and similarly,

∑̃

1,1
(2b) =

∑

r1=(r1,1,r1,2)∈Z
6:

r1∈Z
6\0

∑

r2=(r2,1,r2,2)∈Z
6:

r2∈Z
6\0

∑

1≤j1<k1≤N

∑

k1<k2≤N

|br1 | · |br2 |
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· �(r1,2 − r2,1) · �(r1,1)�(r2,2) ·
∣
∣
∣
∣
∣

e2π i(r1·(uj1 ,uk1 ))vT − 1

2π(r1 · (uj1 ,uk1))vT

∣
∣
∣
∣
∣

·
∣
∣
∣
∣
∣

e2π i(r2·(uk1 ,uk2 ))vT − 1

2π(r2 · (uk1 ,uk2))vT

∣
∣
∣
∣
∣
, (8.65)

∑̃

1,1
(2c) =

∑

r1=(r1,1,r1,2)∈Z
6:

r1∈Z
6\0

∑

r2=(r2,1,r2,2)∈Z
6:

r2∈Z
6\0

∑

1≤j1<k1≤N

∑

1≤j2<j1

|br1 | · |br2 |

· �(r1,1 − r2,2) · �(r1,2)�(r2,1) ·
∣
∣
∣
∣
∣

e2π i(r1·(uj1 ,uk1 ))vT − 1

2π(r1 · (uj1 ,uk1))vT

∣
∣
∣
∣
∣

·
∣
∣
∣
∣
∣

e2π i(r2·(uj2 ,uj1 ))vT − 1

2π(r2 · (uj2 ,uj1))vT

∣
∣
∣
∣
∣
, (8.66)

∑̃

1,1
(2d) =

∑

r1=(r1,1,r1,2)∈Z
6:

r1∈Z
6\0

∑

r2=(r2,1,r2,2)∈Z
6:

r2∈Z
6\0

∑

1≤j1<k1≤N

∑

1≤j2<k1:
j2 �=j1

|br1 | · |br2 |

· �(r1,2 − r2,2) · �(r1,1)�(r2,1) ·
∣
∣
∣
∣
∣

e2π i(r1·(uj1 ,uk1 ))vT − 1

2π(r1 · (uj1 ,uk1))vT

∣
∣
∣
∣
∣

·
∣
∣
∣
∣
∣

e2π i(r2·(uj2 ,uk1 ))vT − 1

2π(r2 · (uj2 ,uk1))vT

∣
∣
∣
∣
∣
, (8.67)

and finally,

∑̃

1,1
(3) =

∑

r1∈Z
6:

r1 �=0

∑

r2∈Z
6:

r2 �=0

∑

1≤j<k≤N

|br1 | · |br2 |

· �(r1 − r2) ·
∣
∣
∣
∣
e2π i(r1·(uj ,uk))vT − 1

2π(r1 · (uj ,uk))vT

∣
∣
∣
∣ ·
∣
∣
∣
∣
e2π i(r2·(uj ,uk))vT − 1

2π(r2 · (uj ,uk))vT

∣
∣
∣
∣ . (8.68)

Next we integrate
∑̃

1,1 over the N direction vectors ui ∈ S2, 1 ≤ i ≤ N :

∑̃∗
1,1

= (4π)−N

∫

S2
. . .

∫

S2

∑̃

1,1
(ui : 1 ≤ i ≤ N)du1 . . . duN

≤ (4π)−N

∫

S2
. . .

∫

S2

(
∑̃

1,1
(1) +

∑̃

1,1
(2a) +

∑̃

1,1
(2b)

+
∑̃

1,1
(2c) +

∑̃

1,1
(2d) +

∑̃

1,1
(3)

)

du1 . . . duN

=
∑̃∗

1,1
(1) +

∑̃∗
1,1

(2a) +
∑̃∗

1,1
(2b)

+
∑̃∗

1,1
(2c) +

∑̃∗
1,1

(2d) +
∑̃∗

1,1
(3). (8.69)
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Again we use the obvious upper bound
∣
∣
∣
∣
e2π i(r·(uj ,uk))vT − 1

2π(r · (uj ,uk))vT

∣
∣
∣
∣≤ min

{
1

π |r · (uj ,uk)|vT
,1

}

. (8.70)

Repeating the arguments in (7.13)–(7.16), we obtain the following analog of (8.40):

(4π)−2
∫

S2

∫

S2
min

{
1

π |r · (uj ,uk)|vT
,1

}

duj duk

≤ 1 + log(πvT max{|r|,1})
πvT max{|r|∞,1} , (8.71)

where, as usual,

|r|∞ = max
1≤i≤d

|ri | if r = (r1, . . . , rd)

denotes the sup-norm; clearly
√

d|r|∞ ≥ |r|. Thus have

∑̃∗
1,1

(1) ≤
(

N

2

)2

⎛

⎜
⎜
⎝

∑

r∈Z
6:

r �=0

|br| · �(r) · 1 + log(πvT |r|)
πvT |r|∞

⎞

⎟
⎟
⎠

2

≤ N4

4
·
(

log(vT )

vT

)2

·

⎛

⎜
⎜
⎝

∑

r∈Z
6:

r �=0

|br|2
⎞

⎟
⎟
⎠

·

⎛

⎜
⎜
⎝

∑

r∈Z
6:

r �=0

�2(r) ·
(

1 + log |r|
|r|∞

)2

⎞

⎟
⎟
⎠ , (8.72)

where in the last step we used the Cauchy–Schwarz inequality. By (8.56) (Parseval’s for-
mula):

∑

r∈Z
6:

r �=0

|br|2 ≤ vol2(A). (8.73)

Furthermore, by using the definition of �(r) (see (8.31)), and the trivial inequality

1 + log |r|
|r|∞ ≤ √

6
1 + log |r|

|r| ≤ √
6,

we have the following analog of (8.43):

∑

r∈Z
6:

r �=0

�2(r) ·
(

1 + log |r|
|r|∞

)2

≤
∑

r∈Z
6:

r �=0

6�2(r)
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≤ 6

(
∑

r∈Z

1

max{r2,1}

)6

= 6

(

1 + 2
∞∑

r=1

1

r2

)6

=
(

1 + 2 · π2

6

)6

< 4 · 104. (8.74)

Note that a more careful estimation gives a better constant factor in (8.74):

∑

r∈Z
6:

r �=0

�2(r) ·
(

1 + log |r|
|r|∞

)2

< 104. (8.75)

(I challenge the reader to double-check (8.75).) Combining these facts, we obtain

∑̃∗
1,1

(1) ≤ 104 · N4

4
· vol2(A) ·

(
log(vT )

vT

)2

, (8.76)

which is an analog of (8.44).
Next we study

∑̃∗
1,1(2a). The following inequality is an analog of (8.45) (we assume

r1 �= 0 �= r2):

(4π)−3
∫

S2

∫

S2

∫

S2
min

{
1

π |r1 · (uj1 ,uk1)|vT
,1

}

· min

{
1

π |r2 · (uj1 ,uk2)|vT
,1

}

duj1duk1duk2

≤
(

(4π)−3
∫

S2

∫

S2

∫

S2
min

{
1

π |r1 · (uj1 ,uk1)|vT
,1

}

duj1duk1duk2

)1/2

·
(

(4π)−3
∫

S2

∫

S2

∫

S2
min

{
1

π |r1 · (uj1 ,uk2)|vT
,1

}

duj1duk1duk2

)1/2

≤
(

2

πvT

)

· (|r1|∞ · |r2|∞)−1/2, (8.77)

where in the last step we used (7.16) twice.
Thus we have

∑̃∗
1,1

(2a) ≤ N3

3

∑

r1=(r1,1,r1,2)∈Z
6:

r1∈Z
6\0

∑

r2=(r2,1,r2,2)∈Z
6:

r2∈Z
6\0

|br1 | · |br2 |

· �(r1,1 − r2,1) · �(r1,2)�(r2,2) · 2

πvT
· (|r1|∞ · |r2|∞)−1/2. (8.78)

Similarly to (8.46)–(8.48), we use the simple inequality

|br1 | · |br2 | ≤
|br1 |2 + |br2 |2

2
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in (8.78), and then estimate the coefficient of |br1 |2 as follows (write r1 − r2 = r3 =
(r3,1, r3,2)):

|br1 |2 ·
(

∑

r2=(r2,1,r2,2)∈Z
6:

r2∈Z
6\0

�(r1,1 − r2,1) · �(r1,2)�(r2,2) · 2

πvT
· (|r1|∞ · |r2|∞)−1/2

)

= |br1 |2 ·
(

∑

r3,1∈Z
3:

r3,1 �=0

∑

r1,2∈Z3

∑

r2,2∈Z3

�(r3,1) · �(r1,2)�(r2,2)

· (|r2 + r3|∞ · |r2|∞)−1/2

)

. (8.79)

By repeating the argument in (8.49), we have

2 max{|r2 + r3|∞, |r2|∞}

≥ max{|r3|∞,2} ≥
3∏

j=1

(
max{|r3,j |,1})1/3 = (

�(r3,1)
)−1/3

, (8.80)

where r3 = (r3,1, r3,2, . . . , r3,6).
Also,

|r1|∞ ≥
6∏

j=4

(
max{|r1,j |,1})1/3 = (

�(r1,2)
)−1/3

, (8.81)

and

|r2|∞ ≥
6∏

j=4

(
max{|r2,j |,1})1/3 = (

�(r2,2)
)−1/3

. (8.82)

We combine the factorization

(|r1|∞ · |r2|∞)1/2 = (|r2 + r3|∞ · |r2|∞)1/4 · |r1|1/4
∞ · |r2|1/4

∞ (8.83)

with (8.80), (8.81), (8.82) as follows: we apply (8.80), (8.81), (8.82) in this order to the three
factors on the right hand side of (8.83). This gives the following upper bound to (8.79):

(8.79) ≤ |br1 |2 · 21/4

(
∑

r∈Z

1

max{|r|13/12,1}

)9

= |br1 |2 · 21/4

(

1 + 2
∞∑

r=1

1

r13/12

)9

< 1013|br1 |2. (8.84)

Thus we have

∑̃∗
1,1

(2a) ≤ N3

3
· 2

πvT
· 1013

∑

r∈Z6\0

|br|2
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≤ 2 · 1013

3πvT
· N3 · vol2(A), (8.85)

where in the last step we used (8.56).
Of course, the same argument—and the same upper bound—applies for “2b”, “2c” and

“2d” instead of “2a” in (8.85).

It remains to estimate
∑̃∗

1,1(3): see (8.68). The argument is basically the same as the

proof of (8.85) for
∑̃∗

1,1(2a); in fact, this case is somewhat simpler. We have

∑̃∗
1,1

(3) =
(

N

2

) ∑

r1∈Z
6:

r1 �=0

∑

r2∈Z
6:

r2 �=0

|br1 |2 + |br2 |2
2

· �(r1 − r2) · 2

πvT
· (|r1|∞ · |r2|∞)−1/2

≤
(

N

2

)

· 2

πvT
·

⎛

⎜
⎜
⎝

∑

r∈Z
6:

r �=0

|br|2
⎞

⎟
⎟
⎠ · 21/2

(
∑

r∈Z

1

max{|r|13/12,1}

)6

<
6 · 108

πvT
· N2 · vol2(A). (8.86)

Summarizing, we have

(
2

π

)N ∫

�̃

⎛

⎝ 1

T

∫ T

0

∑

1≤j<k≤N

(χA(xj (ω; t))χA(xk(ω; t)) − vol2(A)) dt

⎞

⎠

2

dω

=
∑̃∗

1,1
≤
∑̃∗

1,1
(1) +

∑̃∗
1,1

(2a) + · · · +
∑̃∗

1
(2d) +

∑̃∗
1,1

(3)

≤ 104

4
N4 · vol2(A)

(
log(vT )

vT

)2

+ 4 · 2 · 1013 · N3 · vol2(A)

πvT

+ 6 · 108N2 · vol2(A)

πvT
. (8.87)

We consider (8.87) an “analog” of Lemma 7.1.
By (8.20) and (8.87) we obtain the following “analog” of (8.6):

(
2

π

)N ∫

�̃

(∑(1)

(ω;T )

)2

dω

≤ 104

4
N4 · vol2(A)

(
log(vT )

v

)2

+ 4 · 2 · 1013 · T N3 · vol2(A)

πv

+ 6 · 108T N2 · vol2(A)

πv
. (8.88)

Now we are ready to prove Theorem 3. Using (8.19) and the simple inequality (8.7), we
have

(
2

π

)N ∫

�̃

(∫ T

0
(YA(ω; t) − N · vol(A))2 dt

)2

dω
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≤ 3 · 22

(
2

π

)N ∫

�̃

(∑(1)

(ω;T )

)2

dω

+ 3 · (2N · vol(A))2

(
2

π

)N ∫

�̃

(∑(2)

(ω;T )

)2

dω + 3N2T 2, (8.89)

where in the last step we used (8.23).
Using (8.53) and (8.88) in (8.89), we have

(
2

π

)N ∫

�̃

(
1

T

∫ T

0

(
YA(ω; t) − N · vol(A)

N

)2

dt

)2

dω

≤ 3 · 104 · vol2(A)

(
log(vT )

vT

)2

+ 12 · 102 · vol3(A)

(
log(vT )

vT

)2

+ 4 · 104 · vol3(A)

vT N

+ 32 · 1013 · vol2(A)

vT N
+ 24 · 108 · vol2(A)

vT N2
+ 3

N2
, (8.90)

which completes the proof of Theorem 3.
In the rest of the paper we complete the proof of Theorem 1.

9 Proof of Theorem 1: The General Simultaneous Case

Let � ≥ 2 be an arbitrary integer. Section 7 was about the special case � = 2; now we discuss
the general case in a very similar way.

Assume that 2 ≤ � ≤ m = N/M . Let 1 ≤ k(1) < k(2) < · · · < k(�) ≤ N be arbitrary
integers, and let

Ak(1),...,k(�)(T ) = Ak(1),...,k(�)(T ;yk(j),uk(j) : 1 ≤ j ≤ �)

denote the total time between 0 < t < T when the � torus-lines xk(j)(t), 1 ≤ j ≤ � are all in
subset A simultaneously; in other words, when these � torus lines are in A at the same time.

The key observation is that we can describe Ak(1),...,k(�)(T ) in terms of the �th Cartesian
power A� = A × · · · × A ⊂ I 3� = [0,1]3� of A ⊂ I 3 = [0,1]3. Indeed, we have

Ak(1),...,k(�)(T ) = Ak(1),...,k(�)(T ;yk(j),uk(j) : 1 ≤ j ≤ �)

= measure
{
t ∈ [0, T ] : xk(j)(t) ∈ A (mod 1) for all 1 ≤ j ≤ �

}

=
∫ T

0
χA(xk(1)(t)) · · ·χA(xk(�)(t)) dt

=
∫ T

0
χA×···×A(xk(1)(t), . . . ,xk(�)(t)) dt, (9.1)

where χA×···×A is the 0-1 valued characteristic function of A� = A × · · · × A ⊂ I 3�. Write
B = A�; we need the Fourier series of the characteristic function χB = χA� :

χB(w) = χA×···×A(w) =
∑

r∈Z3�

bre
2π ir·w with br =

∫

A×···×A

e−2π ir·z dz, (9.2)
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where r ·w = r1w1 +· · ·+r3�w3� denotes the standard inner product. Clearly b0 = vol(A�) =
(vol(A))� (= the volume of A�), and by Parseval’s formula,

∑

r∈Z
3�:

r �=0

|br|2 = (vol(A))� − (vol(A))2�, (9.3)

which is the analog of (5.3) and (7.3). Let’s return to (9.1): by using the Fourier series (9.2),
we have

Ak(1),...,k(�)(T ) = Ak(1),...,k(�)(T ;yk(j),uk(j) : 1 ≤ j ≤ �)

=
∫ T

0

∑

r∈Z3�

bre
2π ir·(xk(1)(t),...,xk(�)(t)) dt

=
∑

r∈Z3�

br

∫ T

0
e2π ir·(xk(1)(t),...,xk(�)(t)) dt

=
∑

r∈Z3�

bre
2π ir·(yk(1),...,yk(�))

∫ T

0
e2π ir·(uk(1),...,uk(�))vt dt

= b0T +
∑

r∈Z
3�:

r �=0

bre
2π ir·(yk(1),...,yk(�)) · e2π i(r·(uk(1),...,uk(�))vT − 1

2π i(r · (uk(1), . . . ,uk(�)))v
. (9.4)

To clarify the notation here, note that (say) (yk(1), . . . ,yk(�)) means a 3�-dimensional vec-
tor for which the first 3 coordinates are given by yk(1), and so on, and finally, the last 3
coordinates are given by yk(�).

Let M be an arbitrary integer in the range 1 ≤ M ≤ N/�, and consider the sum

F1,...,� = F1,...,�(yk(1),uk(1) : 1 ≤ k(1) ≤ M; . . . ,yk(�),uk(�) : (� − 1)M + 1 ≤ k(�) ≤ �M)

=
M∑

k(1)=1

. . .

�M∑

k(�)=(�−1)M+1

(
1

T
Ak(1),...,k(�)(T ) − (vol(A))�

)

=
M∑

k(1)=1

. . .

�M∑

k(�)=(�−1)M+1

1

T

∫ T

0
χA(xk(1)(t)) · · ·χA(xk(�)(t)) dt − M� · (vol(A))�

= E1,...,� − M� · (vol(A))�, (9.5)

where

E1,...,� = 1

T

∫ T

0
Z1(t) · · ·Z�(t) dt,

Z1(t) =
M∑

k=1

χA(xk(t)), . . . ,Z�(t) =
�M∑

k=(�−1)M+1

χA(xk(t)).
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By (9.4) we have

F1,...,� =
M∑

k(1)=1

. . .

�M∑

k(�)=(�−1)M+1

∑

r∈Z
3�:

r �=0

bre
2π ir·(yk(1),...,yk(�)) · e2π i(r·(uk(1),...,uk(�)))vT − 1

2π i(r · (uk(1), . . . ,uk(�)))v
. (9.6)

Fix the �M unit vectors uk(1) ∈ S2, k(1) = 1,2, . . . ,M, . . . ,uk(�) ∈ S2, k(�) = (� − 1)M +
1, . . . , �M , and evaluate the square integral

∑

1,...,�
=
∫

I3
. . .

∫

I3

(
F1,...,�(yk(1),uk(1) : 1 ≤ k(1) ≤ M; . . . ;yk(�),uk(�) :

(� − 1)M + 1 ≤ k(�) ≤ �M)
)2

dy1 . . . dy�M. (9.7)

Note that (9.7) is a multiple integral, which consists of �M single integrals.
To evaluate (9.7), we multiply out the square F 2

1,...,� (where for F1,...,� we use (9.6)) and
apply some orthogonality relations, leading to huge cancellations. To understand the cancel-
lations, we study the following sub-problem: When does the multiple integral

Int(r1, k(1)1, . . . , k(�)1; r2, k(1)2, . . . , k(�)2)

=
∫

I3
. . .

∫

I3
e2π i(r1·(yk(1)1

,...,yk(�)1
)−r2·(yk(1)2

,...,yk(�)2
)) dyk(1)1 . . . dyk(�)2 , (9.8)

where r1, r2 ∈ Z
3� \ 0 and 1 ≤ k(1)1, k(1)2 ≤ M < · · · ≤ (� − 1)M < k(�)1, k(�)2 ≤ �M ,

equal to zero?
Well, the first challenge is that in the multiple integral (9.8) the number of integrations

depends on whether the index set {k(1)1, . . . , k(�)1, . . . , k(1)2, . . . , k(�)2} consists of � or
� + 1 or . . . or 2� different integers. Accordingly, we distinguish � + 1 cases.

Case 1: {k(1)1, . . . , k(�)1, . . . , k(1)2, . . . , k(�)2} consists of 2� different integers

Then clearly

Int(r1, k(1)1, . . . , k(�)1; r2, k(1)2, . . . , k(�)2) = 0.

Case 2: {k(1)1, . . . , k(�)1, . . . , k(1)2, . . . , k(�)2} consists of 2� − 1 different integers

For notational simplicity, assume that k(1)1 = k(1)2. Write r1 = (r1,1, r1,2) and r2 =
(r2,1, r2,2), where r1,1, r2,1 ∈ Z

3 and r1,2, r2,2 ∈ Z
3�−3. Then

Int(r1, k(1)1, . . . , k(�)1; r2, k(1)2, . . . , k(�)2)

=
∫

I3
. . .

∫

I3

(∫

I3
e2π i(r1,1−r2,1)·yk(1)1 dyk(1)1

)

× e2π i(r1,2·(yk(2)1
,...,yk(�)1

)−r2,2·(yk(2)2
,...,yk(�)2

)) dyk(2)1 . . . dyk(�)2 ,

and this integral is always 0, unless r1,1 = r2,1 and r1,2 = r2,2 = (0, . . . ,0) = 0, and then
of course the integral is 1. Similar result holds for the other cases when k(j)1 = k(j)2 for
exactly one index j in 1 ≤ j ≤ �.

Case 3: {k(1)1, . . . , k(�)1, . . . , k(1)2, . . . , k(�)2} consists of 2� − 2 different integers
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For notational simplicity, assume that k(1)1 = k(1)2 and k(2)1 = k(2)2. Write r1 =
(r1,1, r1,2) and r2 = (r2,1, r2,2), where r1,1, r2,1 ∈ Z

6 and r1,2, r2,2 ∈ Z
3�−6. Then

Int(r1, k(1)1, . . . , k(�)1; r2, k(1)2, . . . , k(�)2)

=
∫

I3
. . .

∫

I3

(∫

I6
e2π i(r1,1−r2,1)·y dy

)

× e2π i(r1,2·(yk(3)1
,...,yk(�)1

)−r2,2·(yk(3)2
,...,yk(�)2

)) dyk(3)1 . . . dyk(�)2 ,

and this integral is always 0, unless r1,1 = r2,1 and r1,2 = r2,2 = (0, . . . ,0) = 0, and then
of course the integral is 1. Similar result holds for the other cases when k(j)1 = k(j)2 for
exactly two indexes j = j1 and j = j2 in 1 ≤ j1 < j2 ≤ �.

Cases 4, 5, . . . go similarly; for illustration I just include the last case.

Case � + 1: k(j)1 = k(j)2 holds for all 1 ≤ j ≤ �

Then

Int(r1, k(1)1, . . . , k(�)1; r2, k(1)2, . . . , k(�)2)

=
∫

I3�

e2π i(r1−r2)·y dy,

which is always 0, unless r1 = r2.
Now we are ready to evaluate

∑
1,...,� (see (9.7)): squaring (9.6) and applying Cases 1, 2,

. . . , �, � + 1 above (in fact, we apply them in reverse order), we obtain

∑

1,...,�
=
∑

1,2
(uk(1) : 1 ≤ k(1) ≤ M; . . . ;uk(�) : (� − 1)M + 1 ≤ k(�) ≤ �M)

=
∑

r∈Z
3�:

r �=0

|br|2 ·
M∑

k(1)=1

. . .

�M∑

k(�)=(�−1)M+1

∣
∣
∣
∣

e2π i(r·(uk(1),...,uk(�)))vT − 1

2π(r · (uk(1), . . . ,uk(�)))vT

∣
∣
∣
∣

2

+
∑

r=(r1,0)∈Z
3�:

r1∈Z
3�−3\0

|br|2 ·
M∑

k(1)=1

. . .

(�−1)M∑

k(�−1)=(�−2)M+1

�M∑

k(�)1=(�−1)M+1

�M∑

k(�)2=(�−1)M+1

∣
∣
∣
∣

e2π i(r1·(uk(1),...,uk(�−1))vT − 1

2π(r1 · (uk(1), . . . ,uk(�−1)))vT

∣
∣
∣
∣

2

+ · · ·

+
∑

r=(0,r�)∈Z
3�:

r�∈Z
3�−3\0

|br|2 ·
M∑

k(1)1=1

M∑

k(1)2=1

2M∑

k(2)=M+1

3M∑

k(3)=2M+1

. . .

�M∑

k(�)=(�−1)M+1

∣
∣
∣
∣

e2π i(r�·(uk(2),...,uk(�))vT − 1

2π(r2 · (uk(2), . . . ,uk(�)))vT

∣
∣
∣
∣

2

+
∑

r=(r1,0)∈Z
3�:

r1∈Z
3�−6\0

|br|2 ·
M∑

k(1)=1

. . .

(�−2)M∑

k(�−2)=(�−3)M+1

(�−1)M∑

k(�−1)1=(�−2)M+1

(�−1)M∑

k(�−1)2=(�−2)M+1
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�M∑

k(�)1=(�−1)M+1

�M∑

k(�)2=(�−1)M+1

∣
∣
∣
∣

e2π i(r1·(uk(1),...,uk(�−2))vT − 1

2π(r1 · (uk(1), . . . ,uk(�−2)))vT

∣
∣
∣
∣

2

+ · · · . (9.9)

Next we integrate
∑

1,...,� over the �M direction vectors uk(1) ∈ S2, k(1) = 1, . . . ,M , . . . ,

uk(�) ∈ S2, k(�) = (� − 1)M + 1, . . . , �M (this multiple integral consists of �M single inte-
grals):

∑∗
1,...,�

= (4π)−�M

∫

S2
. . .

∫

S2

∑

1,...,�
(uk(1) : 1 ≤ k(1) ≤ M; . . . ;uk(�) :

(� − 1)M + 1 ≤ k(�) ≤ �M)du1 . . . du�M. (9.10)

Let’s return to the first sum in (9.9): we have the obvious upper bound
∣
∣
∣
∣

e2π i(r·(uk(1),...,uk(�)))vT − 1

2π(r · (uk(1), . . . ,uk(�)))vT

∣
∣
∣
∣≤ min

{
1

π |r · (uk(1), . . . ,uk(�))|vT
,1

}

. (9.11)

We need to estimate the integral

(4π)−�

∫

S2
. . .

∫

S2
min

{
1

(πr · (uk(1), . . . ,uk(�))vT )2
,1

}

duk(1) . . . duk(�). (9.12)

I recall (7.13): for any real numbers c1 < c2 we have,

SurfaceArea
({

u ∈ S2 : c1 ≤ r · u ≤ c2
})= 4π · min{c2, r} − max{c1,−r}

r
, (9.13)

where r = |r| and r ∈ Z
3 \ 0.

Now let r ∈ Z
3�\0, and write r = (r1, . . . , r�); then clearly r1 ∈ Z

3 \0 or . . . or r� ∈ Z
3 \0.

Suppose that (say) r1 ∈ Z
3 \ 0; then we can estimate the integral in (9.12) as follows:

(4π)−�

∫

S2
. . .

∫

S2
min

{
1

(πr · (uk(1), . . . ,uk(�))vT )2
,1

}

duk(1) . . . duk(�)

= (4π)−�

∫

S2
. . .

∫

S2

(∫

S2
min

{
1

(π(r1 · uk(1) + · · · + r� · uk(�))vT )2
,1

}

duk(1)

)

duk(2) . . . duk(�). (9.14)

For any fixed value of uk(2) , . . . , uk(�), the inner integral in (9.14) can be estimated from
above by repeating the argument in (5.15) and using (9.13), and thus we obtain the upper
bound (let c0 = r2 · uk(2) + · · · + r� · uk(�))

∫

S2
min

{
1

(π(r1 · uk(1) + c0)vT )2
,1

}

duk(1) ≤ 2

πvT |r1| ,

which is an analog of (7.15). Using this in (9.14), we obtain

(4π)−�

∫

S2
. . .

∫

S2
min

{
1

(πr · (uk(1), . . . ,uk(�))vT )2
,1

}

duk(1) . . . duk(�)

≤ 2

πvT |r1| ≤ 2

πvT
. (9.15)
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Let’s return now to (9.9)–(9.10). By using (9.11) and (9.15), we have

(4π)−�M

∫

S2
. . .

∫

S2

∑

r∈Z
3�:

r �=0

M∑

k(1)=1

. . .

�M∑

k(�)=(�−1)M+1

|br|2 ·
∣
∣
∣
∣

e2π i(r·(uk(1),...,uk(�)))vT − 1

2π(r · (uk(1), . . . ,uk(�)))vT

∣
∣
∣
∣

2

du1 . . . du�M

≤ (4π)−�M

∫

S2
. . .

∫

S2

M∑

k(1)=1

. . .

�M∑

k(�)=(�−1)M+1

∑

r∈Z
3�:

r �=0

|br|2

·min

{
1

(πr · (uk(1), . . . ,uk(�))vT )2
,1

}

du1 . . . du�M

≤ 2

πvT
· M�

∑

r∈Z
3�:

r �=0

|br|2 ≤ 2

πvT
· M� · (vol(A))�, (9.16)

where in the last step we used (9.3). This settles the contribution of the first big sum on the
right hand side of (9.9).

The rest of (9.9) can be handled similarly; the only novelty is to replace (9.3) with the
following argument (see (9.17) below). Suppose that (say) r = (r1,0) ∈ Z

3� with r1 ∈ Z
3j \0

and 1 ≤ j < �; then

br =
∫

A�

e−2π ir·z dz

= (vol(A))�−j

∫

Aj

e−2π ir1·w dw = (vol(A))�−j · ar1 ,

where ar1 (i.e., the Fourier coefficient of the characteristic function of Aj = A × · · · × A

j -times) satisfies the Parseval formula:
∑

r1∈Z3j

|ar1 |2 = vol(Aj ) = (vol(A))j .

Thus we have
∑

r=(r1,0)∈Z
3�:

r1∈Z
3j \0

|br|2 ≤ (vol(A))2�−2j · (vol(A))j = (vol(A))2�−j . (9.17)

This is the analog of (7.19)–(7.20).
Therefore, we obtain the following analog of Lemma 7.1.

Lemma 9.1 For every integer 1 ≤ � ≤ m = N/M we have

∑∗
1,...,�

≤ 2

πvT
·
(

M� · (vol(A))� + � · M�+1 · (vol(A))�+1 +
(

�

2

)

M�+2 · (vol(A))�+2

+
(

�

3

)

M�+3 · (vol(A))�+3 + · · · +
(

�

� − 1

)

M2�−1 · (vol(A))2�−1

)
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= 2

πvT
· M2� · (vol(A))2�

((
1

M · vol(A)
+ 1

)�

− 1

)

, (9.18)

where the square-integral
∑∗

1,...,� (see (9.5), (9.7), (9.10)) equals the multiple integral

(4π)−�M

∫

I3
. . .

∫

I3

∫

S2
. . .

∫

S2

⎛

⎝
M∑

k(1)=1

. . .

�M∑

k(�)=(�−1)M+1

(
1

T
Ak(1),...,k(�)(T ) − (vol(A))�

)
⎞

⎠

2

dy1 . . . dy�M du1 . . . du�M,

(9.19)

which consists of 2�M single integrals.

10 Proof of Theorem 1: Applying Lemmas 5.1 and 7.1

The objective of this section is to prove Lemma 10.1; see at the end. We recall that Ak(T ) =
Ak(T ;yk,uk) denotes the time the kth torus-line xk(t)—defined in (5.1), noting that yk is
the initial position and uk is the direction—spends in subset A during 0 < t < T , that is,

Ak(T ) = Ak(T ;yk,uk) = measure {t ∈ [0, T ] : xk(t) ∈ A (mod 1)}

=
∫ T

0
χA(xk(t)) dt.

Also I use � to denote the set of all N ! permutation of 1,2, . . . ,N . (Note in advance that
the permutations play a crucial role in the applications of Lemmas 7.1 and 9.1; see below.)
Let γ ∈ � be an arbitrary permutation, and for any 1 ≤ h ≤ m = N/M write

Eh(γ ) = Eh(T ;yγ (k),uγ (k) : k ∈ I(h);γ )

= 1

T

hM∑

k=(h−1)M+1

Aγ(k)(T ;yγ (k),uγ (k)) = 1

T

∫ T

0
Zh(γ ; t) dt, (10.1)

where

Zh(γ ; t) = Zh(yγ (k),uγ (k) : k ∈ I(h);γ ; t)

=
hM∑

k=(h−1)M+1

χA(xγ (k)(t)), (10.2)

where for convenience we use the short notation

I(h) = {(h − 1)M + 1, (h − 1)M + 2, . . . , hM}.

By Lemma 5.1, for every h in 1 ≤ h ≤ m we have (here we break the long integral into three
lines)
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(4π)−N

∫

I3
. . .

∫

I3

∫

S2
. . .

∫

S2

1

N !
∑

γ∈�

(
Eh(T ;yγ (k),uγ (k) : k ∈ I(h);γ ) − M · vol(A)

)2
dy1 . . . dyN du1 . . . duN

≤ 2

πvT
· M · vol(A). (10.3)

Let

� = I 3 × · · · × I 3 × S2 × · · · × S2 = I 3N × (
S2
)N

(10.4)

denote the space of all initial conditions

(y1, . . . ,yN,u1, . . . ,uN) ∈ �, (10.5)

where I = [0,1] and S2 is the unit sphere (in the usual 3-space). Clearly measure(�) =
(4π)N , since the surface area of the unit sphere S2 is 4π (of course measure means the
product measure).

Let 0 < ε < 1 be arbitrary but fixed; its value will be specified later. We obtain from
(10.3) by a standard average argument that, there is a measurable subset �1(bad) of � such
that, for all initial conditions

(y1, . . . ,yN,u1, . . . ,uN) ∈ � \ �1(bad), (10.6)

we have that

1

N !
∑

γ∈�

(
Eh(T ;yγ (k),uγ (k) : k ∈ I(h);γ ) − M · vol(A)

)2

≤ 4m

ε
· 2

πvT
· M · vol(A) (10.7)

holds for all 1 ≤ h ≤ m, and �1(bad) is “negligible”:

measure (�1(bad)) <
ε

4
measure(�). (10.8)

Indeed, the average argument goes as follows. For each h = 1,2, . . . ,m we delete the set
of initial conditions which violate (10.7); each such set forms a small minority, because the
violation of (10.7) means “much larger than the average”. Thus we altogether delete less
than m · ε

4m
= ε

4 part, proving (10.8). This kind of average argument will be used repeatedly
in the rest of the paper.

Needless to say, we consider �1(bad) a “bad” subset of �; we will throw it away at the
end of the proof of the theorem.

Let j, k be arbitrary integers with 1 ≤ j < k ≤ N ; I recall that

Aj,k(T ) = Aj,k(T ;yj ,uj ;yk,uk)

denotes the total time between 0 < t < T when the j th torus-line xj (t) and the kth torus-line
xk(t) are both in subset A simultaneously. We have
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Aj,k(T ) = Aj,k(T ;yj ,uj ;yk,uk)

= measure
{
t ∈ [0, T ] : xj (t) ∈ A (mod 1) and xk(t) ∈ A (mod 1)

}

=
∫ T

0
χA(xj (t))χA(xk(t)) dt. (10.9)

Again let γ ∈ � be an arbitrary permutation of 1,2, . . . ,N , and for any 1 ≤ h ≤ m = N/M

write

E
(half )
2h−1,2h(γ ) = E

(half )
2h−1,2h(T ;yγ (k),uγ (k) : k ∈ I(h);γ )

= 1

T

(h− 1
2 )M∑

j=(h−1)M+1

hM∑

k=(h− 1
2 )M+1

Aγ(j),γ (k)(T ;yγ (j),uγ (j);yγ (k),uγ (k))

= 1

T

∫ T

0
Z

(half )
2h−1 (γ ; t)Z(half )

2h (γ ; t) dt, (10.10)

where

Z
(half )
2h−1 (γ ; t) = Z

(half )
2h−1

(

yγ (k),uγ (k) : k ∈ I
(

h − 1

2

)

;γ ; t
)

=
(h− 1

2 )M∑

k=(h−1)M+1

χA(xγ (k)(t)) (10.11)

and

Z
(half )
2h (γ ; t) = Z

(half )
2h (yγ (k),uγ (k) : k ∈ I(h;1/2);γ ; t)

=
hM∑

k=(h− 1
2 )M+1

χA(xγ (k)(t)), (10.12)

where for convenience we use the short notation

I(h′;1/2) =
{(

h′ − 1

2

)

M + 1,

(

h′ − 1

2

)

M + 2, . . . , h′M
}

,

noting that h′ can be any integer or half-integer.
Applying Lemma 7.1 with M = M/2, for every h in 1 ≤ h ≤ m we have

(4π)−N

∫

I3
. . .

∫

I3

∫

S2
. . .

∫

S2

1

N !
∑

γ∈�

(

E
(half )
2h−1,2h(T ;yγ (k),uγ (k) : k ∈ I(h);γ ) − M2

4
· vol2(A)

)2

dy1 . . . dyN du1 . . . duN

≤ 2

πvT
·
(

M2

4
· vol2(A) + 2

M3

8
· vol3(A)

)

. (10.13)
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Let 0 < ε < 1; it follows from (10.13) by a standard average argument (similar to (10.7)–
(10.8)) that, there is a measurable subset �2(bad) of � such that, for all initial conditions

(y1, . . . ,yN,u1, . . . ,uN) ∈ � \ �2(bad), (10.14)

we have that

1

N !
∑

γ∈�

(

E
(half )
2h−1,2h(T ;yγ (k),uγ (k) : k ∈ I(h);γ ) − M2

4
· vol2(A)

)2

≤ 4m

ε
· 2

πvT
·
(

M2

4
· vol2(A) + 2

M3

8
· vol3(A)

)

(10.15)

holds for all 1 ≤ h ≤ m, and again �2(bad) is “negligible”:

measure (�2(bad)) <
ε

4
measure(�). (10.16)

Again �2(bad) is a “bad” subset of � that we will throw away at the end.
Consider a “good” initial condition

(y1, . . . ,yN,u1, . . . ,uN) ∈ � \ (�1(bad) ∪ �2(bad)) . (10.17)

It means that we can use (10.7)–(10.8) and (10.15)–(10.16).
The “time average” of

Zh(γ ; t) = Zh(yγ (k),uγ (k) : k ∈ I(h);γ ; t)

=
hM∑

k=(h−1)M+1

χA(xγ (k)(t)),

as t runs in 0 < t < T , equals

1

T

∫ T

0
Zh(γ ; t) dt = Eh(γ ). (10.18)

The values of Zh(γ ; t), as t runs in 0 < t < T , are non-negative integers 0,1,2,3, . . . ; now
for every integer � ≥ 0 we define the set

Wh(γ ;�) = Wh(yγ (k),uγ (k) : k ∈ I(h);γ ;�) = {t ∈ [0, T ] : Zh(γ ; t) = �}. (10.19)

Then we have the following disjoint decomposition of the interval 0 ≤ t ≤ T :

[0, T ] = Wh(γ ;0) ∪ Wh(γ ;1) ∪ Wh(γ ;2) ∪ Wh(γ ;3) ∪ · · ·
= Wh(γ ;0) ∪ Wh(γ ;1) ∪ Wh(γ ;≥ 2).

Write

Vh(γ ;�) = Vh(yγ (k),uγ (k) : k ∈ I(h);γ ;�) = 1

T
measure (Wh(γ ;�)) , (10.20)

implying

0 ≤ Vh(γ ;�) ≤ 1.
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We need to give an upper bound for the size Vh(γ ;�) of a “typical” set Wh(γ ;�) with � ≥ 2
(“typical” means the majority of the initial conditions yγ (k),uγ (k) : k ∈ I(h) and the majority
of the permutations γ ∈ �). In fact, we will estimate a whole power-of-two group

2j+1−1∑

�=2j

Vh(γ ;�) for any integer j ≥ 1.

We will obtain such an upper bound by using a second moment argument.
For simplicity assume that M is even; let I1 ∪ I2 be an arbitrary halving split of the set

{(h − 1)M + 1, (h − 1)M + 2, . . . , hM} = I(h) of M consecutive integers into two disjoint
subsets of size M/2 each. There are exactly

( M

M/2

)
such halving splits. For any fixed halving

split (I1, I2), write

ZI1(γ ; t)ZI2(γ ; t) =
⎛

⎝
∑

k1∈I1

χA(xγ (k1)(t))

⎞

⎠

⎛

⎝
∑

k2∈I2

χA(xγ (k2)(t))

⎞

⎠ .

Let � ≥ 2; if t0 ∈ Wh(γ ;�) ⇔ Zh(γ ; t0) = � for some 0 ≤ t0 ≤ T , then at least one-half of
the

(
M

M/2

)
halving splits have the property that

ZI1(γ ; t0)ZI2(γ ; t0) ≥ 1 for � = 2,3 and ZI1(γ ; t0)ZI2(γ ; t0) >
�2 − 2�

4
for � ≥ 4.

(10.21)
Indeed, this is exactly the argument in (5.27)–(5.31).

Let M be an arbitrary M-element subset of the first N integers {1,2, . . . ,N}, and let
P(h; M) ⊂ � denote the set of all permutations γ ∈ � such that

{γ (k) : k ∈ I(h)} = M. (10.22)

Note that

Vh(γ ;�) = Vh(yγ (k),uγ (k) : k ∈ I(h);γ ;�)
depends only on the whole class γ ∈ P(h; M), and we denote this common value with

Vh(P(h; M);�) = Vh(yγ (k),uγ (k) : k ∈ I(h); P(h; M);�). (10.23)

We need the following trivial inequality: if α ≥ 0 and β ≥ 0 are arbitrary positive real
numbers, then

0 ≤ α < 2β or (α − β)2 ≥ 1

4
α2. (10.24)

Let j ≥ 1 be an integer, and consider the values of � in the power-of-two group

2j ≤ � < 2j+1. (10.25)

Combining (10.15), (10.21), inequality (10.24), and using notation (10.23), we obtain that

1
(
N

M

)

∗∗∑

M⊂{1,...,N}:
|M|=M

1

4

⎛

⎝

⎛

⎝
∑

2j ≤�<2j+1

Vh(P(h; M);�)
⎞

⎠ (2j )2 − 2 · 2j

4

⎞

⎠

2
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≤ 2 · 4m

ε
· 2

πvT
·
(

M2

4
· vol2(A) + 2

M3

8
· vol3(A)

)

(10.26)

holds for all 1 ≤ h ≤ m and all j ≥ 2 (see (10.25)). Note that the double asterisk ** in
∑∗∗

means that the summation is restricted to the terms satisfying

⎛

⎝

⎛

⎝
∑

2j ≤�<2j+1

Vh(P(h; M);�)
⎞

⎠ (2j )2 − 2 · 2j

4

⎞

⎠

2

≥ 2 · M2

4
· vol2(A), (10.27)

see (10.24). Also the first factor “2” in the last line in (10.26) comes from the one-half right
before (10.21).

In the special case j = 1, covering the values � = 2 and 3, we have

1
(
N

M

)

∗∗∑

M⊂{1,...,N}:
|M|=M

1

4

(
∑

2≤�≤3

Vh(P(h; M);�)
)2

≤ 2 · 4m

ε
· 2

πvT
·
(

M2

4
· vol2(A) + 2

M3

8
· vol3(A)

)

. (10.28)

Let’s return to (10.26): we divide both sides with the factor

(
(2j )2 − 2 · 2j

4

)2

= 22j−2
(
2j−1 − 1

)2
,

and obtain

1
(
N

M

)

∗∗∑

M⊂{1,...,N}:
|M|=M

⎛

⎝
∑

2j ≤�<2j+1

Vh(P(h; M);�)
⎞

⎠

2

≤ 4

22j−2(2j−1 − 1)2
· 2 · 4m

ε
· 2

πvT
·
(

M2

4
· vol2(A) + 2

M3

8
· vol3(A)

)

(10.29)

for all 1 ≤ h ≤ m and all j ≥ 2 (it remains true even for j = 1 if the first factor in the last
line of (10.29) is replaced with “4”).

It follows from (10.28)–(10.29) by a standard average argument (similar to (10.7)–(10.8))
that, there is a subset �1(bad) of � (= the set of all N ! permutations of the first N integers)
such that, for all permutations

γ ∈ � \ �1(bad) (10.30)

and all integers 1 ≤ h ≤ m and j ≥ 1,

∑

2j ≤�<2j+1

Vh(γ ;�) ≤ 4
√

m · j
max{2j−1(2j−1 − 1),1} · C(10.29)

+ 2

max{2j−1(2j−1 − 1),1} · M2

4
· vol2(A), (10.31)
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and

1

N ! |�1(bad)| < 1

8
, (10.32)

where

C(10.29) =
(

2 · 4m

ε
· 2

πvT
·
(

M2

4
· vol2(A) + 2

M3

8
· vol3(A)

))1/2

, (10.33)

the extra factor of j in the numerator right before C(10.29) in (10.31) comes from the
convergent series

∞∑

j=1

1

j 2
= π2

6
< 2,

the last term in (10.31) comes from (10.27), and finally, in (10.32) I used the standard nota-
tion | · · · | to denote the number of elements of a finite set.

Since we assumed a “good” initial condition (see (10.17)):

ω = (y1, . . . ,yN,u1, . . . ,uN) ∈ � \ (�1(bad) ∪ �2(bad)) , (10.34)

we can use (10.7)–(10.8) and (10.15)–(10.16). We already used (10.15) in (10.26); now we
use (10.7). A simple average argument (similar to (10.7)–(10.8)) gives that, there is a subset
�2(bad) of � (= the set of N ! permutations of 1,2, . . . ,N ) such that, for all permutations

γ ∈ � \ �2(bad) (10.35)

and all integers 1 ≤ h ≤ m, we have

|Eh(ω;γ ) − M · vol(A)| ≤ 2
√

m · C(10.7), (10.36)

and

1

N ! |�2(bad)| < 1

8
, (10.37)

where

C(10.7) =
(

4m

ε
· 2

πvT
· M · vol(A)

)1/2

. (10.38)

Next we turn to (10.17)–(10.20). We have

Eh(ω;γ ) = 1

T

∫ T

0
Zh(ω;γ ; t) dt =

∞∑

�=1

Vh(ω;γ ;�) · �

= Vh(ω;γ ;1) +
∞∑

j=1

∑

2j ≤�<2j+1

Vh(ω;γ ;�) · �. (10.39)

Let

γ ∈ � \ (�1(bad) ∪ �2(bad)) , (10.40)
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then by (10.31), (10.33), (10.36), (10.38) and (10.39),

|Vh(ω;γ ;1) − M · vol(A)|

≤ 2
√

m · C(10.7) +
∞∑

j=1

⎛

⎝
∑

2j ≤�<2j+1

Vh(ω;γ ;�)
⎞

⎠ · 2j+1

≤ 2
√

m · C(10.7) + C(10.29) ·
∞∑

j=1

4
√

m · 2j+1 · j
max{2j−1(2j−1 − 1),1}

+ M2

4
· vol2(A) ·

∞∑

j=1

2 · 2j+1

max{2j−1(2j−1 − 1),1} (10.41)

for every 1 ≤ h ≤ m.
Let

vol(A) = λ

N
. (10.42)

Since m = N/M , we have M · vol(A) = M · λ/N = λ/m. Using this in (10.41), and esti-
mating the two infinite series, we obtain

∣
∣
∣
∣Vh(ω;γ ;1) − λ

m

∣
∣
∣
∣

≤ 4m

(
1

ε
· 1

vT
· λ

m

)1/2

+ 200m

(
1

ε
· 1

vT
·
((

λ

m

)2

+
(

λ

m

)3
))1/2

+ 25

4

(
λ

m

)2

. (10.43)

We will also need the following estimate, which can be proved exactly the same way as
(10.43)):

Vh(ω;γ ;≥ 2) =
∞∑

j=1

⎛

⎝
∑

2j ≤�<2j+1

Vh(ω;γ ;�)
⎞

⎠

≤ C(10.29) ·
∞∑

j=1

4
√

m · j
max{2j−1(2j−1 − 1),1}

+ M2

4
· vol2(A) ·

∞∑

j=1

2

max{2j−1(2j−1 − 1),1}

≤ 10m

(
1

ε
· 1

vT
·
((

λ

m

)2

+
(

λ

m

)3
))1/2

+
(

λ

m

)2

(10.44)

for every 1 ≤ h ≤ m.
Therefore, we have just proved (see (10.42)–(10.44))
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Lemma 10.1 Assume that the initial condition satisfies the requirement

ω = (y1, . . . ,yN,u1, . . . ,uN) ∈ � \ (�1(bad) ∪ �2(bad)) ,

and also, the permutation γ satisfies

γ ∈ � \ (�1(bad) ∪ �2(bad)) ,

then for every 1 ≤ h ≤ m we have

∣
∣
∣
∣Vh(ω;γ ;1) − λ

m

∣
∣
∣
∣ ≤ 25

4

(
λ

m

)2

+ 1√
vT

· 1√
ε

(

4
√

λm + 200λ

√(

1 + λ

m

))

, (10.45)

and

Vh(ω;γ ;≥ 2) =
∞∑

j=1

⎛

⎝
∑

2j ≤�<2j+1

Vh(ω;γ ;�)
⎞

⎠≤
(

λ

m

)2

+ 1√
vT

· 10√
ε

· λ
√(

1 + λ

m

)

, (10.46)

where

vol(A) = λ

N
.

Finally, note that

measure(�1(bad)) <
ε

4
measure(�), measure(�2(bad)) <

ε

4
measure(�),

and similarly, |�| = N ! and

|�1(bad)| < N !
8

, |�2(bad)| < N !
8

.

The message of Lemma 10.1 is the following: if vT is “large”, then the terms in the last
line of (10.45) and (10.46) are negligible compared to (λ/m)2, and so we have

Vh(ω;γ ;1) = λ

m
+ O

((
λ

m

)2
)

and Vh(ω;γ ;≥ 2) = O

((
λ

m

)2
)

. (10.47)

The objective of the next section is to prove a simultaneous version of (10.47).

11 Simultaneous Generalization of Lemma 10.1

Let j, k be arbitrary integers with 1 ≤ j < k ≤ N ; I recall that

Aj,k(T ) = Aj,k(T ;yj ,uj ;yk,uk)
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denotes the total time between 0 < t < T when the j th torus-line xj (t) and the kth torus-line
xk(t) are both in subset A simultaneously:

Aj,k(T ) = Aj,k(T ;yj ,uj ;yk,uk)

= measure
{
t ∈ [0, T ] : xj (t) ∈ A (mod 1) and xk(t) ∈ A (mod 1)

}

=
∫ T

0
χA(xj (t))χA(xk(t)) dt. (11.1)

Again let γ ∈ � be an arbitrary permutation of 1,2, . . . ,N , and for any 1 ≤ h1 < h2 ≤ m =
N/M write

Eh1,h2(γ )

= Eh1,h2(yγ (j),uγ (j) : j ∈ I(h1);yγ (k),uγ (k) : k ∈ I(h2);γ )

=
h1M∑

j=(h1−1)M+1

h2M∑

k=(h2−1)M+1

1

T
Aγ(j),γ (k)(T )

= 1

T

∫ T

0
Zh1(γ ; t)Zh2(γ ; t) dt. (11.2)

Note that we are constantly using the short notation (which was already introduced in
Sect. 10)

I(h) = {(h − 1)M + 1, (h − 1)M + 2, . . . , hM},
where h is always an integer; but later we will also use

I(h′;1/2) =
{(

h′ − 1

2

)

M + 1,

(

h′ − 1

2

)

M + 2, . . . , h′M
}

,

where h′ can be any integer or half-integer.
By Lemma 7.1, for every 1 ≤ h1 < h2 ≤ m we have

(4π)−N

∫

I3
. . .

∫

I3

∫

S2
. . .

∫

S2

1

N !
∑

γ∈�

(

Eh1,h2(T ;yγ (j),uγ (j) : j ∈ I(h1);yγ (k),uγ (k) : k ∈ I(h2);γ )

− M2 · vol2(A)

)2

dy1 . . . dyN du1 . . . duN

≤ 2

πvT
· (M2 · vol2(A) + 2M3 · vol3(A)

)
. (11.3)

Let 0 < ε < 1; it follows from (11.3) by a standard average argument (similar to (10.7)–
(10.8)) that, there is a measurable subset �3(bad) of � (= the set of all initial conditions)
such that, for all initial conditions

(y1, . . . ,yN,u1, . . . ,uN) ∈ � \ �3(bad), (11.4)
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we have that

1

N !
∑

γ∈�

(

Eh1,h2(T ;yγ (j),uγ (j) : j ∈ I(h1);yγ (k),uγ (k) : k ∈ I(h2);γ )

− M2 · vol2(A)

)2

≤ 4m2

ε
· 2

πvT
· (M2 · vol2(A) + 2M3 · vol3(A)

)
(11.5)

holds for all 1 ≤ h1 < h2 ≤ m, and �3(bad) is “negligible”:

measure (�3(bad)) <
ε

8
measure(�). (11.6)

As usual, �3(bad) is a “bad” subset of � that we will throw away at the end.
Again let 1 ≤ h1 < h2 ≤ m = N/M , let δ = 0 or 1, and define (see also (9.1))

E
(half )
2h1−1,2h1,2h2−δ(γ )

= E
(half )
2h1−1,2h1,2h2−δ

(

T ;yγ (j),uγ (j) : j ∈ I(h1);

yγ (k),uγ (k) : k ∈ I
(

h2 − δ

2
;1/2

)

;γ
)

= 1

T

(h1− 1
2 )M∑

j1=(h1−1)M+1

h1M∑

j2=(h1− 1
2 )M+1

(h2− δ
2 )M∑

k=(h2− 1+δ
2 )M+1

Aγ(j1),γ (j2),γ (k)(T )

= 1

T

∫ T

0
Z

(half )
2h1−1(γ ; t)Z(half )

2h1
(γ ; t)Z(half )

2h2−δ(γ ; t) dt, (11.7)

where

Z
(half )
2h−1 (γ ; t) = Z

(half )
2h−1 (yγ (k),uγ (k) : k ∈ I(h);γ ; t)

=
(h− 1

2 )M∑

k=(h−1)M+1

χA(xγ (k)(t)) (11.8)

and

Z
(half )
2h (γ ; t) = Z

(half )
2h (yγ (k),uγ (k) : k ∈ I(h;1/2);γ ; t)

=
hM∑

k=(h− 1
2 )M+1

χA(xγ (k)(t)). (11.9)

Of course, we can similarly define

E
(half )
2h1−δ,2h2−1,2h2

(γ ), (11.10)

where 1 ≤ h1 < h2 ≤ m and δ = 0 or 1; and also the quadruple version

E
(half )
2h1−1,2h1,2h2−1,2h2

(γ ). (11.11)



248 J. Beck

Applying Lemma 9.1 with M = M/2 and � = 3, for every 1 ≤ h1 < h2 ≤ m and δ = 0 or
1 we have

(4π)−N

∫

I3
. . .

∫

I3

∫

S2
. . .

∫

S2

1

N !
∑

γ∈�

(

E
(half )
2h1−1,2h1,2h2−δ

(

T ;yγ (j),uγ (j) : j ∈ I(h1);

yγ (k),uγ (k) : k ∈ I
(

h2 − δ

2
;1/2

)

;γ
)

− M3

8
· vol3(A)

)2

dy1 . . . dyN du1 . . . duN

≤ 2

πvT
·
(

M3

8
· vol3(A) + 3

M4

16
· vol4(A) + 3

M5

32
· vol5(A)

)

= 2

πvT
·
(

M

2
vol(A)

)6
((

2

M · vol(A)
+ 1

)3

− 1

)

. (11.12)

Of course, we have a perfect analog of (11.12) for (11.10).
And also, we have a similar result for (11.11) which goes as follows. Applying

Lemma 9.1 with M = M/2 and � = 4, for every 1 ≤ h1 < h2 ≤ m we have

(4π)−N

∫

I3
. . .

∫

I3

∫

S2
. . .

∫

S2

1

N !
∑

γ∈�

(

E
(half )
2h1−1,2h1,2h2−1,2h2

(T ;yγ (j),uγ (j) : j ∈ I(h1);

yγ (k),uγ (k) : k ∈ I(h2);γ ) − M4

16
· vol4(A)

)2

dy1 . . . dyN du1 . . . duN

≤ 2

πvT
·
(

M4

16
· vol4(A) + 4

M5

32
· vol5(A) + 6

M6

64
· vol6(A) + 4

M7

128
· vol7(A)

)

= 2

πvT
·
(

M

2
vol(A)

)8
((

2

M · vol(A)
+ 1

)4

− 1

)

. (11.13)

Let 0 < ε < 1; it follows from (11.12)–(11.13) by a standard average argument (similar
to (10.7)–(10.8)) that, there is a measurable subset �4(bad) of � such that, for all initial
conditions

(y1, . . . ,yN,u1, . . . ,uN) ∈ � \ �4(bad), (11.14)

we have that

1

N !
∑

γ∈�

(

E
(half )
2h1−1,2h1,2h2−δ

(

T ;yγ (j),uγ (j) : j ∈ I(h1);

yγ (k),uγ (k) : k ∈ I
(

h2 − δ

2
;1/2

)

M;γ
)

− M3

8
· vol3(A)

)2

≤ 8m2

ε
· 2

πvT
·
(

M

2
vol(A)

)6
((

2

M · vol(A)
+ 1

)3

− 1

)

(11.15)
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holds for all 1 ≤ h1 < h2 ≤ m and δ = 0 or 1, and similarly,

1

N !
∑

γ∈�

(

E
(half )
2h1−δ,2h2−1,2h2

(T ;
(

yγ (j),uγ (j) : j ∈ I
(

h1 − δ

2
;1/2

)

;

yγ (k),uγ (k) : k ∈ I(h2);γ
)

− M3

8
· vol3(A)

)2

≤ 8m2

ε
· 2

πvT
·
(

M

2
vol(A)

)6
((

2

M · vol(A)
+ 1

)3

− 1

)

(11.16)

holds for all 1 ≤ h1 < h2 ≤ m and δ = 0 or 1, and similarly,

1

N !
∑

γ∈�

(

E
(half )
2h1−1,2h1,2h2−1,2h2

(T ;yγ (j),uγ (j) : j ∈ I(h1);

yγ (k),uγ (k) : k ∈ I(h2);γ ) − M4

16
· vol4(A)

)2

≤ 8m2

ε
· 2

πvT
·
(

M

2
vol(A)

)8
((

2

M · vol(A)
+ 1

)4

− 1

)

(11.17)

holds for all 1 ≤ h1 < h2 ≤ m, and finally, �4(bad) is “negligible”:

measure (�4(bad)) <
ε

8
measure(�). (11.18)

Again �4(bad) represents a “bad” subset of � that we will throw away at the end.
Consider a “good” initial condition

(y1, . . . ,yN,u1, . . . ,uN) ∈ � \ (�3(bad) ∪ �4(bad)) . (11.19)

It means that we can use (11.5)–(11.6) and (11.15)–(11.18).
Let’s return to (11.2): for any 1 ≤ h1 < h2 ≤ m the “time average” of the product

Zh1(γ ; t)Zh2(γ ; t),
as t runs in 0 < t < T , equals

1

T

∫ T

0
Zh1(γ ; t)Zh2(γ ; t) dt

= Eh1,h2(γ ) = Eh1,h2(yγ (j),uγ (j) : j ∈ I(h1);yγ (k),uγ (k) : k ∈ I(h2);γ ).

The values of Zh(γ ; t), as t runs in 0 < t < T , are non-negative integers 0,1,2,3, . . . ; now
for every pair of non-negative integers (�1, �2) we define the set

Wh1,h2(γ ;�1;�2)

= Wh1,h2(yγ (j),uγ (j) : j ∈ I(h1);yγ (k),uγ (k) : k ∈ I(h2);γ ;�1;�2)

= {t ∈ [0, T ] : Zh1(γ ; t) = �1 and Zh2(γ ; t) = �2}. (11.20)
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Then we have the following disjoint decomposition of the interval 0 ≤ t ≤ T :

[0, T ] =
∞⋃

�1=0

∞⋃

�2=0

Wh1,h2(γ ;�1;�2).

Write

Vh1,h2(γ ;�1;�2)

= Vh1,h2(yγ (j),uγ (j) : j ∈ I(h1);yγ (k),uγ (k) : k ∈ I(h2);γ ;�1;�2)

= 1

T
measure

(
Wh1,h2(γ ;�1;�2)

)
, (11.21)

implying

0 ≤ Vh1,h2(γ ;�1;�2) ≤ 1.

We need to give an upper bound for the size Vh1,h2(γ ;�1;�2) of a “typical” set Wh1,h2(γ ;
�1;�2) with �1�2 ≥ 2 (“typical” means the majority of the initial conditions and the majority
of the permutations). In fact, we will estimate whole power-of-two groups such as

2j+1−1∑

�1=2j

Vh1,h2(γ ;�1;1) (11.22)

and

2j+1−1∑

�2=2j

Vh1,h2(γ ;1;�2) (11.23)

for all integers j ≥ 1, and also

2j1+1−1∑

�1=2j1

2j2+1−1∑

�2=2j2

Vh1,h2(γ ;�1;�2) (11.24)

for all integers j1 ≥ 1 and j2 ≥ 1. We will obtain an upper bound by using a second moment
argument—similarly to what we did in Sect. 10.

For simplicity assume that M is even; let h = h1 or h2. Let I1 ∪ I2 be an arbitrary halving
split of the set {(h − 1)M + 1, (h − 1)M + 2, . . . , hM} = I(h) of M consecutive integers
into two disjoint subsets of size M/2 each. There are exactly

(
M

M/2

)
such halving splits. For

any fixed halving split (I1, I2), write

ZI1(γ ; t)ZI2(γ ; t) =
⎛

⎝
∑

k1∈I1

χA(xγ (k1)(t))

⎞

⎠

⎛

⎝
∑

k2∈I2

χA(xγ (k2)(t)

⎞

⎠ .

First we discuss the case (11.24). Let �1 ≥ 2 and �2 ≥ 2. If

t0 ∈ Wh1,h2(γ ;�1;�2) ⇐⇒ Zh1(γ ; t0) = �1 and Zh2(γ ; t0) = �2
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for some 0 ≤ t0 ≤ T , then at least one-half of the
(

M

M/2

)
halving splits (I

(1)

1 , I
(1)

2 ) of
{(h1 − 1)M + 1, (h1 − 1)M + 2, . . . , h1M} = I(h1) have the property that

Z
I
(1)
1

(γ ; t0)ZI
(1)
2

(γ ; t0) ≥ 1 for �1 = 2,3 and
(11.25)

Z
I
(1)
1

(γ ; t0)ZI
(1)
2

(γ ; t0) >
�2

1 − 2�1

4
for �1 ≥ 4,

and similarly, at least one-half of the
(

M

M/2

)
halving splits (I

(2)

1 , I
(2)

2 ) of {(h2 − 1)M + 1,

(h2 − 1)M + 2, . . . , h2M} = I(h2) have the property that

Z
I
(2)
1

(γ ; t0)ZI
(2)
2

(γ ; t0) ≥ 1 for �2 = 2,3 and
(11.26)

Z
I
(2)
1

(γ ; t0)ZI
(2)
2

(γ ; t0) >
�2

2 − 2�2

4
for �2 ≥ 4.

Indeed, just like in Sect. 8, we applied here the argument in (5.27)–(5.31).
Let M1 be an arbitrary M-element subset of the first N integers {1,2, . . . ,N}, and let

P(h1; M1) ⊂ � denote the set of all permutations γ ∈ � such that

{γ (j) : j ∈ I(h1)} = {γ (j) : (h1 − 1)M + 1 ≤ j ≤ h1M} = M1, (11.27)

and let M2 be an arbitrary M-element subset of {1,2, . . . ,N} disjoint from M1, and let
P(h2; M2) ⊂ � denote the set of all permutations γ ∈ � such that

{γ (k) : k ∈ I(h2)} = {γ (k) : (h2 − 1)M + 1 ≤ k ≤ h2M} = M2. (11.28)

Note that

Vh1,h2(γ ;�1;�2)

= Vh1,h2(yγ (j),uγ (j) : j ∈ I(h1);yγ (k),uγ (k) : k ∈ I(h2);γ ;�1;�2)

depends only on the whole class γ ∈ P(h1; M1) ∩ P(h2; M2), and we denote this common
value with

Vh1,h2(P(h1; M1); P(h2; M2);�1;�2)

= Vh1,h2(yγ (j),uγ (j) : j ∈ I(h1);yγ (k),uγ (k) : k ∈ I(h2);
P(h1; M1); P(h2; M2);�1;�2). (11.29)

Again we use inequality (10.24): if α ≥ 0 and β ≥ 0 are arbitrary positive real numbers,
then

0 ≤ α < 2β or (α − β)2 ≥ 1

4
α2. (11.30)

Let j1 ≥ 1 and j2 ≥ 1 be integers, and consider the power-of-two groups

2j1+1−1∑

�1=2j1

Vh1,h2(γ ;�1;1),

2j2+1−1∑

�2=2j2

Vh1,h2(γ ;1;�2) (11.31)
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and

2j1+1−1∑

�1=2j1

2j2+1−1∑

�2=2j2

Vh1,h2(γ ;�1;�2). (11.32)

Combining (11.14)–(11.16), (11.25)–(11.26), inequality (11.30), and using notation (11.29),
we obtain that

1
(
N

M

)(
N−M

M

)

∗∗∗∑

M1⊂{1,...,N}:
|M1|=M

∗∗∗∑

M2⊂{1,...,N}:
|M2|=M, |M1∩M2|=0

1

4

⎛

⎝

⎛

⎝
∑

2j1 ≤�1<2j1+1

Vh1,h2(P(h1; M1); P(h2; M2);�1;1)

⎞

⎠max

{
(2j1)2 − 2 · 2j1

4
,1

}
⎞

⎠

2

≤ 2 · 8m2

ε
· 2

πvT
·
(

M

2
vol(A)

)6
((

2

M · vol(A)
+ 1

)3

− 1

)

(11.33)

holds for all 1 ≤ h1 < h2 ≤ m and for all j1 ≥ 1 (see the first sum in (11.31)), and similarly,

1
(
N

M

)(
N−M

M

)

∗∗∗∑

M1⊂{1,...,N}:
|M1|=M

∗∗∗∑

M2⊂{1,...,N}:
|M2|=M, |M1∩M2|=0

1

4

⎛

⎝

⎛

⎝
∑

2j2 ≤�2<2j2+1

Vh1,h2(P(h1; M1); P(h1; M2);1;�2)

⎞

⎠max

{
(2j2)2 − 2 · 2j2

4
,1

}
⎞

⎠

2

≤ 2 · 8m2

ε
· 2

πvT
·
(

M

2
vol(A)

)6
((

2

M · vol(A)
+ 1

)3

− 1

)

(11.34)

holds for all 1 ≤ h1 < h2 ≤ m and for all j2 ≥ 1 (see the second sum in (11.31)), and finally,

1
(
N

M

)(
N−M

M

)

∗∗∗∑

M1⊂{1,...,N}:
|M1|=M

∗∗∗∑

M2⊂{1,...,N}:
|M2|=M, |M1∩M2|=0

1

4

(( ∑

2j1 ≤�1<2j1+1

∑

2j2 ≤�2<2j2+1

Vh1,h2(P(h1; M1); P(h2; M2);�1;�2)

)

· max

{
(2j1)2 − 2 · 2j1

4
,1

}

· max

{
(2j2)2 − 2 · 2j2

4
,1

})2

≤ 4 · 8m2

ε
· 2

πvT
·
(

M

2
vol(A)

)8
((

2

M · vol(A)
+ 1

)4

− 1

)

(11.35)
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holds for all 1 ≤ h1 < h2 ≤ m and for all j1 ≥ 1, j2 ≥ 1 (see (11.32)). Note that the triple
asterisk *** in (11.33) means that the summation is restricted to the terms satisfying

⎛

⎝

⎛

⎝
∑

2j1 ≤�1<2j1+1

Vh1,h2(P(h1; M1); P(h2; M2);�1;1)

⎞

⎠max

{
(2j1)2 − 2 · 2j1

4
,1

}
⎞

⎠

2

≥ 2 · M3

8
· vol3(A), (11.36)

see (11.30). Also the first factor “2” in the last line of (11.33) comes from the one-half
before (11.25).

Similarly, the triple asterisk *** in (11.34) means that the summation is restricted to the
terms satisfying

⎛

⎝

⎛

⎝
∑

2j2 ≤�2<2j2+1

Vh1,h2(P(h1; M1); P(h2; M2);1;�2)

⎞

⎠max

{
(2j2)2 − 2 · 2j2

4
,1

}
⎞

⎠

2

≥ 2 · M3

8
· vol3(A), (11.37)

and finally, the triple asterisk *** in (11.35) means that the summation is restricted to the
terms satisfying

(( ∑

2j1 ≤�1<2j1+1

∑

2j2 ≤�2<2j2+1

Vh1,h2(P(h1; M1); P(h2; M2);�1;�2)

)

· max

{
(2j1)2 − 2 · 2j1

4
,1

}

· max

{
(2j2)2 − 2 · 2j2

4
,1

})2

≥ 2 · M4

16
· vol4(A). (11.38)

Note that the first factor “4” in the last line of (11.35) comes from the product of the one-half
before (11.25) and the other one-half before (11.26).

Next we divide both sides of (11.33) with the factor

max

{(
(2j )2 − 2 · 2j

4

)2

,1

}

= max
{

22j−2
(
2j−1 − 1

)2
,1
}

(11.39)

where j = j1, divide both sides of (11.34) with the factor (11.39) where j = j2, and divide
both sides of (11.35) with the product

max
{

22j1−2
(
2j1−1 − 1

)2
,1
}

· max
{

22j2−2
(
2j2−1 − 1

)2
,1
}

.

Then by using the standard average argument, we obtain that, there is a subset �3(bad) of
� such that, for all permutations

γ ∈ � \ �3(bad) (11.40)

and all integers 1 ≤ h1 < h2 ≤ m and j1 ≥ 1, j2 ≥ 1 we have:
∑

2j1 ≤�1<2j1+1

Vh1,h2(γ ;�1;1)
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≤ 4m2 · j1

max{2j1−1(2j1−1 − 1),1} · C(11.33)

+ 2

max{2j1−1(2j1−1 − 1),1} · M3

8
· vol3(A), (11.41)

where the extra factor of j1 in the numerator right before C(11.33) comes from the conver-
gent series

∑
j≥1 j−2 < 2, the factor C(11.33) itself is defined as

C(11.33) =
(

2 · 8m2

ε
· 2

πvT
·
(

M

2
vol(A)

)6
((

2

M · vol(A)
+ 1

)3

− 1

))1/2

, (11.42)

and the last term in (11.41) comes from (11.36); similarly, we have:

∑

2j2 ≤�1<2j2+1

Vh1,h2(γ ;1;�2)

≤ 4m2 · j2

max{2j2−1(2j2−1 − 1),1} · C(11.33)

+ 2

max{2j2−1(2j2−1 − 1),1} · M3

8
· vol3(A), (11.43)

which is a perfect analog of (11.41); moreover, we have:

∑

2j1 ≤�1<2j1+1

∑

2j2 ≤�2<2j2+1

Vh1,h2(γ ;�1;�2)

≤ 4m2 · j1j2

max{ (2j1 )2−2·2j1

4 ,1} · max{ (2j2 )2−2·2j2

4 ,1}
· C(11.35)

+ 2

max{ (2j1 )2−2·2j1

4 ,1} · max{ (2j2 )2−2·2j2

4 ,1}
· M4

16
· vol4(A), (11.44)

where

C(11.35) =
(

4 · 8m2

ε
· 2

πvT
·
(

M

2
vol(A)

)8
((

2

M · vol(A)
+ 1

)4

− 1

))1/2

, (11.45)

and finally,

1

N ! |�3(bad)| < 1

16
(11.46)

(where, as usual, | · · · | denotes the number of elements of a finite set).
Since we assumed a “good” initial condition (see (11.19)):

ω = (y1, . . . ,yN,u1, . . . ,uN) ∈ � \ (�3(bad) ∪ �4(bad)) , (11.47)

we can use (11.5)–(11.6) and (11.15)–(11.18). We already used (11.15)–(11.17) in (11.33);
now we use (11.5). The standard average argument gives that, there is a subset �4(bad) of
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� (= the set of N ! permutations of 1,2, . . . ,N ) such that, for all permutations

γ ∈ � \ �4(bad) (11.48)

and all integers 1 ≤ h1 < h2 ≤ m, we have

|Eh1,h2(ω;γ ) − M2 · vol2(A)| ≤ 4m · C(11.5), (11.49)

and

1

N ! |�4(bad)| < 1

16
, (11.50)

where

C(11.5) =
(

4m2

ε
· 2

πvT
· (M2 · vol2(A) + 2M3 · vol3(A)

)
)1/2

. (11.51)

Next we turn to (11.19)–(11.21). We have

Eh1,h2(ω;γ ) = 1

T

∫ T

0
Zh1(ω;γ ; t)Zh2(ω;γ ; t) dt

=
∞∑

�1=1

∞∑

�2=1

Vh1,h2(ω;γ ;�1;�2) · �1�2

= Vh1,h2(ω;γ ;1;1) +
∞∑

j=1

2j+1−1∑

�1=2j

Vh1,h2(ω;γ ;�1;1) · �1

+
∞∑

j=1

2j+1−1∑

�2=2j

Vh1,h2(ω;γ ;1;�2) · �2

+
∞∑

j1=1

∞∑

j2=1

2j1+1−1∑

�1=2j1

2j2+1−1∑

�2=2j2

Vh1,h2(ω;γ ;�1;�2) · �1�2. (11.52)

Let

γ ∈ � \ (�3(bad) ∪ �4(bad)) , (11.53)

then by (11.49) and (11.52),

|Vh1,h2(ω;γ ;1;1) − M2 · vol2(A)|

≤ 4m · C(11.5) +
∞∑

j=1

⎛

⎝
2j+1−1∑

�1=2j

Vh1,h2(ω;γ ;�1;1)

⎞

⎠ · 2j+1

+
∞∑

j=1

⎛

⎝
2j+1−1∑

�2=2j

Vh1,h2(ω;γ ;1;�2)

⎞

⎠ · 2j+1
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+
∞∑

j1=1

∞∑

j2=1

⎛

⎝
2j1+1−1∑

�1=2j1

2j2+1−1∑

�2=2j2

Vh1,h2(ω;γ ;�1;�2)

⎞

⎠ · 2j1+1 · 2j2+1. (11.54)

Applying (11.41), (11.43) and (11.44), we have

|Vh1,h2(ω;γ ;1;1) − M2 · vol2(A)|

≤ 4m · C(11.5) + C(11.33) ·
∞∑

j=1

8m2 · 2j+1 · j
max{2j−1(2j−1 − 1),1}

+ M3

8
· vol3(A) ·

∞∑

j=1

4 · 2j+1

max{2j−1(2j−1 − 1),1}

+ C(11.35) ·
∞∑

j1=1

∞∑

j2=1

4m2 · 2j1+1 · 2j2+1 · j1j2

max{ (2j1 )2−2·2j1

4 ,1} · max{ (2j2 )2−2·2j2

4 ,1}

+ M4

16
· vol4(A) ·

∞∑

j1=1

∞∑

j2=1

2 · 2j1+1 · 2j2+1

max{ (2j1 )2−2·2j1

4 ,1} · max{ (2j2 )2−2·2j2

4 ,1}
(11.55)

for every 1 ≤ h1 < h2 ≤ m.
Let

vol(A) = λ

N
. (11.56)

Since m = N/M , we have M · vol(A) = M · λ/N = λ/m. Using this in (11.55), and esti-
mating the infinite series, we obtain

∣
∣
∣
∣
∣
Vh1,h2(ω;γ ;1;1) −

(
λ

m

)2
∣
∣
∣
∣
∣

≤ 1√
vT

· 15√
ε

· λm

(

1 + 2
λ

m

)1/2

+ 1√
vT

· 800√
ε

· (λm)3/2

+ 1√
vT

· 104

√
ε

· λ2m + 6

(
λ

m

)3

+ 30

(
λ

m

)4

. (11.57)

We will also need the following estimate, which can be proved exactly the same way as
(11.57):

Vh1,h2(ω;γ ;> (1,1)) =
∞∑

j=1

2j+1−1∑

�1=2j

Vh1,h2(ω;γ ;�1;1)

+
∞∑

j=1

2j+1−1∑

�2=2j

Vh1,h2(ω;γ ;1;�2)

+
∞∑

j1=1

∞∑

j2=1

2j1+1−1∑

�1=2j1

2j2+1−1∑

�2=2j2

Vh1,h2(ω;γ ;�1;�2)
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≤ 1√
vT

· 100√
ε

· (λm)3/2 +
(

λ

m

)3

+ 1√
vT

· 80√
ε

· λ2m +
(

λ

m

)4

. (11.58)

Therefore, we have just proved (see (11.56)–(11.58))

Lemma 11.1 Assume that the initial condition satisfies the requirement

ω = (y1, . . . ,yN,u1, . . . ,uN) ∈ � \ (�3(bad) ∪ �4(bad)) ,

and also, the permutation γ satisfies

γ ∈ � \ (�3(bad) ∪ �4(bad)) ,

then for every 1 ≤ h1 < h2 ≤ m we have

∣
∣
∣
∣
∣
Vh1,h2(ω;γ ;1;1) −

(
λ

m

)2
∣
∣
∣
∣
∣

≤ 6

(
λ

m

)3

+ 30

(
λ

m

)4

+ 1√
vT

· 1√
ε

(

15λm

(

1 + 2
λ

m

)1/2

+ 800(λm)3/2 + 104λ2m

)

, (11.59)

and

Vh1,h2(ω;γ ;> (1,1))

=
∞∑

�1=1

∑

1≤�2<∞:
�1�2>1

Vh1,h2(ω;γ ;�1;�2)

≤
(

λ

m

)3

+
(

λ

m

)4

+ 1√
vT

· 1√
ε

(
100(λm)3/2 + 80λ2m

)
, (11.60)

where

vol(A) = λ

N
.

Finally, note that

measure(�3(bad)) <
ε

8
measure(�), measure(�4(bad)) <

ε

8
measure(�),

and similarly, |�| = N ! and

|�3(bad)| < N !
16

, |�4(bad)| < N !
16

.
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The message of Lemma 11.1 is the following: if vT is “large”, then the terms in the last
line of (11.59) and (11.60) are negligible compared to (λ/m)3, and so we have

Vh1,h2(ω;γ ;1;1) =
(

λ

m

)2

+ O

((
λ

m

)3
)

and

(11.61)

Vh1.h2(ω;γ ;> (1,1)) = O

((
λ

m

)3
)

.

12 Completing the Proof of Theorem 1

Notice that Lemma 11.1 at the end of the last section is a generalization of Lemma 10.1.
Applying the same method—namely, a repeated application of Lemma 9.1, combined with
a standard average argument—we can easily prove the following more general result; see
Lemma 12.1 below. We start with some notation.

Let r be an arbitrary integer in the range 2 ≤ r ≤ m = N/M (note that r = 1 is covered
by Lemma 10.1, and r = 2 is Lemma 11.1; here we treat the general case). Let 1 ≤ k1 <

k2 < · · · < kr ≤ N be arbitrary integers and, as usual, let

Ak1,...,kr (T ) = Ak1,...,kr (T ;yki
,uki

: 1 ≤ i ≤ r)

denote the total time between 0 < t < T when the r torus-lines xki
(t), 1 ≤ i ≤ r are all in

subset A simultaneously:

Ak1,...,kr (T ) = Ak1,...,kr (T ;yki
,uki

: 1 ≤ i ≤ r)

= measure
{
t ∈ [0, T ] : xki

(t) ∈ A (mod 1) for all 1 ≤ i ≤ r
}

=
∫ T

0
χA(xk1(t)) · · ·χA(xkr (t)) dt. (12.1)

Let γ ∈ � be an arbitrary permutation of 1,2, . . . ,N , and for any sequence 1 ≤ h1 < h2 <

· · · < hr ≤ m = N/M write

Eh1,...,hr (γ )

= Eh1,...,hr (yγ (k1),uγ (k1) : k1 ∈ I(h1); . . . ;yγ (kr ),uγ (kr ) : kr ∈ I(hr);γ )

=
h1M∑

k1=(h1−1)M+1

. . .

hrM∑

kr=(hr−1)M+1

1

T
Aγ(k1),...,γ (kr )(T )

= 1

T

∫ T

0
Zh1(γ ; t) · · ·Zhr (γ ; t) dt, (12.2)

where we used the short notation (h is an integer)

I(h) = {(h − 1)M + 1, (h − 1)M + 2, . . . , hM},
and also

Zh(γ ; t) = Zh(yγ (k),uγ (k) : k ∈ I(h);γ ; t)
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=
hM∑

k=(h−1)M+1

χA(xγ (k)(t)).

The values of Zh(γ ; t), as t runs in 0 < t < T , are non-negative integers 0,1,2,3, . . . ;
now for every sequence of non-negative integers (�1, . . . , �r ) we define the set

Wh1,...,hr (γ ;�1; . . . ;�r)

= Wh1,...,hr (yγ (k1),uγ (k1) : k1 ∈ I(h1); . . . ;yγ (kr ),uγ (kr ) : kr ∈ I(hr);γ ;�1; . . . ;�r)

= {t ∈ [0, T ] : Zhi
(γ ; t) = �i for all i = 1, . . . , r}. (12.3)

Then we have the following disjoint decomposition of the interval 0 ≤ t ≤ T :

[0, T ] =
∞⋃

�1=0

∞⋃

�2=0

Wh1,...,hr (γ ;�1; . . . ;�r).

Write

Vh1,...,hr (γ ;�1; . . . ;�r)

= Vh1,...,hr (yγ (k1),uγ (k1) : k1 ∈ I(h1); . . . ;yγ (kr ),uγ (kr ) : kr ∈ I(hr);γ ;�1; . . . ;�r)

= 1

T
measure

(
Wh1,...,hr (γ ;�1; . . . ;�r)

)
, (12.4)

implying

0 ≤ Vh1,...,hr (γ ;�1; . . . ;�r) ≤ 1.

Write

Vh1,...,hr (γ ;> (1, . . . ,1)) =
∑

�i≥1, 1≤i≤r:
�1···�r>1

Vh1,...,hr (γ ;�1; . . . ;�r).

Now we are ready to formulate a generalization of Lemma 11.1 (which represents the case
r = 2) for arbitrary r ≥ 2.

Lemma 12.1 For every integer r ≥ 2 there is a subset �(r)(bad) of � with

measure(�(r)(bad)) <
1

4(r − 1)2
· measure(�), (12.5)

and there is a subset �(r)(bad) of � with

|�(r)(bad)| < N !
8(r − 1)2

(12.6)

such that, for any initial condition

ω = (y1, . . . ,yN,u1, . . . ,uN) ∈ � \ �(r)(bad)

and for any permutation γ satisfying

γ ∈ � \ �(r)(bad),
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we have for all 1 ≤ h1 < · · · < hr ≤ m:
∣
∣
∣
∣Vh1,...,hr (ω;γ ;1; . . . ;1) −

(
λ

m

)r ∣∣
∣
∣

≤ 10

(
λ

m

)r+1

+ 1√
vT

· 104r

√
ε

(
(λm)r− 1

2 + λr · mr−1
)

, (12.7)

and

Vh1,...,hr (ω;γ ;> (1, . . . ,1))

≤ 2

(
λ

m

)r+1

+ 1√
vT

· 102r

√
ε

(
(λm)r− 1

2 + λr · mr−1
)

, (12.8)

where

vol(A) = λ

N
.

The choice 1
4(r−1)2 in (12.5)–(12.6) is motivated by the numerical fact

1

2
+

∞∑

r=2

1

4(r − 1)2
< 1. (12.9)

By using Lemma 12.1 for r ≥ 2 and Lemma 10.1 for r = 1, we can easily execute the proof
plan outlined at the end of Sect. 5.

Let YA(t) denote the point-counting function:

YA(; t) = YA(ω; t) =
∑

1≤k≤N :
xk(t)∈A

1,

where the N torus lines xk(t), 1 ≤ k ≤ N are determined by a given initial condition

ω = (y1, . . . ,yN,u1, . . . ,uN) ∈ �.

For typical initial conditions we are able to describe the distribution of

YA(t) = YA(ω; t) = YA(y1, . . . ,yN,u1, . . . ,uN ; t)
as t runs in 0 ≤ t ≤ T . We begin with value 0, that is, we describe the density of YA(ω; t) = 0
as 0 ≤ t ≤ T . Note that

{0 ≤ t ≤ T : YA(ω; t) = 0} =
m⋂

h=1

Wh(ω;γ ;0)

holds for any permutation γ ∈ �. We recall that

Wh(ω;γ ;≥ 1) = {t ∈ [0, T ] : Zh(ω;γ ; t) ≥ 1}
and

Wh1,...,hr (ω;γ ;≥ 1) = Wh1,...,hr (ω;γ ;1; . . . ;1) ∪ Wh1,...,hr (ω;γ ;> (1, . . . ,1))
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=
{

t ∈ [0, T ] :
r∏

i=1

Zhi
(ω;γ ; t) ≥ 1

}

=
r⋂

i=1

Whi
(ω;γ ;≥ 1).

Next we return to (5.32), but instead of using the complete inclusion-exclusion equality, we
apply the following truncated inequality.

Lemma 12.2 (“Brunn’s sieve”) Let (�0, F0,μ0) be any probability space (i.e., F0 is a σ -
algebra of the subsets of �0 and μ0 is a σ -additive measure on F0), let B1,B2, . . . ,Bm ∈ F0

be arbitrary events, and let 1 ≤ q < m be an arbitrary odd integer. Then

1 −
m∑

i=1

μ0(Bi) +
∑

1≤i1<i2≤m

μ0(Bi1 ∩ Bi2) ∓ · · · −
∑

1≤i1<···<iq≤m

μ0(Bi1 ∩ · · · ∩ Biq )

≤ μ0

(
m⋂

i=1

Bi

)

≤ 1 −
m∑

i=1

μ0(Bi) +
∑

1≤i1<i2≤m

μ0(Bi1 ∩ Bi2) ∓ · · · +
∑

1≤i1<···<iq+1≤m

μ0(Bi1 ∩ · · · ∩ Biq+1).

Remark This inequality, well-known to number-theorists as the “Brunn’s sieve”, and also
known as the Bonferroni inequalities, has a simple proof that is based on the fact that the
partial sums of the alternating series

(
m

0

)

−
(

m

1

)

+
(

m

2

)

−
(

m

3

)

±

are alternating in sign:

(
m

0

)

−
(

m

1

)

+
(

m

2

)

∓ · · · + (−1)q

(
m

q

)

= (−1)q

(
m − 1

q

)

.

The plan is to combine Lemma 12.1 (and Lemma 10.1 for r = 1) with Lemma 12.2.
Choose an initial condition

ω = (y1, . . . ,yN,u1, . . . ,uN) ∈ � \
(

q⋃

r=1

�(r)(bad)

)

(12.10)

and a permutation

γ ∈ � \
(

q⋃

r=1

�(r)(bad)

)

. (12.11)

In view of Lemma 12.1 (and Lemma 10.1 for r = 1), more than 1 − ε part of � is available
in (12.10), and more than half of � is available in (12.11).

By Lemma 12.2, we have with YA(ω; t) = YA(y1, . . . ,yN,u1, . . . ,uN ; t) (μ denotes the
one-dimensional Lebesgue measure):

1

T
μ{0 ≤ t ≤ T : YA(ω; t) = 0}
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= 1

T
μ

(
m⋂

h=1

Wh(ω;0)

)

≥ 1 −
m∑

h=1

Vh(ω;γ ;≥ 1) +
∑

1≤h1<h2≤m

Vh1,h2(ω;γ ;≥ 1) ∓ · · ·

−
∑

1≤h1<···<hq≤m

Vh1,...,hq (ω;γ ;≥ 1), (12.12)

and similarly, we have the other inequality:

1

T
μ{0 ≤ t ≤ T : YA(ω; t) = 0}

= 1

T
μ

(
m⋂

h=1

Wh(ω;0)

)

≤ 1 −
m∑

h=1

Vh(ω;γ ;≥ 1) +
∑

1≤h1<h2≤m

Vh1,h2(ω;γ ;≥ 1) ∓ · · ·

+
∑

1≤h1<···<hq+1≤m

Vh1,...,hq+1(ω;γ ;≥ 1), (12.13)

where 1 ≤ q < m is any odd integer. We will specify the optimal value of parameter q very
soon.

Let 1 ≤ r ≤ q; since

Vh1,...,hr (ω;γ ;≥ 1) = Vh1,...,hr (ω;γ ;1; . . . ;1) + Vh1,...,hr (ω;γ ;> (1, . . . ,1)),

by Lemma 12.1 (and Lemma 10.1 for r = 1) we have:
∣
∣
∣
∣Vh1,...,hr (ω;γ ;≥ 1) −

(
λ

m

)r ∣∣
∣
∣

≤ 12

(
λ

m

)r+1

+ 1√
vT

· 104r + 102r

√
ε

(
(λm)r− 1

2 + λr · mr−1
)

. (12.14)

Therefore, we obtain
∣
∣
∣
∣
∣

1

T
μ{0 ≤ t ≤ T : YA(ω; t) = 0} − 1 + m

λ

m
−
(

m

2

)(
λ

m

)2

+
(

m

3

)(
λ

m

)3

∓ · · · +
(

m

q

)(
λ

m

)q
∣
∣
∣
∣
∣

≤
q+1∑

r=1

12

(
m

r

)(
λ

m

)r+1

+
q+1∑

r=1

(
m

r

)
1√
vT

· 104r + 102r

√
ε

(
(λm)r− 1

2 + λr · mr−1
)

. (12.15)
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First we estimate the inner sum in (12.15), and show that it is close to the Taylor series
of e−λ:

1 − m
λ

m
+
(

m

2

)(
λ

m

)2

−
(

m

3

)(
λ

m

)3

± · · · −
(

m

q

)(
λ

m

)q

=
q∑

r=0

(−1)r λr

r! +
q∑

r=0

(−1)r λr

r!
((

1 − 1

m

)

· · ·
(

1 − r − 1

m

)

− 1

)

= e−λ −
∞∑

r=q+1

(−1)r λr

r!

+
q∑

r=0

(−1)r λr

r!
((

1 − 1

m

)

· · ·
(

1 − r − 1

m

)

− 1

)

. (12.16)

Applying (12.16) in (12.15), we have
∣
∣
∣
∣

1

T
μ{0 ≤ t ≤ T : YA(ω; t) = 0} − e−λ

∣
∣
∣
∣

≤
∞∑

r=q+1

(−1)r λr

r!

+
q∑

r=0

(−1)r λr

r!
((

1 − 1

m

)

· · ·
(

1 − r − 1

m

)

− 1

)

+
q+1∑

r=1

12

(
m

r

)(
λ

m

)r+1

+
q+1∑

r=1

(
m

r

)
1√
vT

· 104r + 102r

√
ε

(
(λm)r− 1

2 + λr · mr−1
)

. (12.17)

Using the well-known facts

j ! ≥
(

j

e

)j

and 1 − r

m
≥ e−2r/m for 1 ≤ r ≤ m/4,

we have
∞∑

r=q+1

λr

r! ≤
∞∑

r=q+1

(
eλ

r

)r

(12.18)

and
(

q∑

r=0

λr

r!

)∣
∣
∣
∣

(

1 − 1

m

)

· · ·
(

1 − r − 1

m

)

− 1

∣
∣
∣
∣≤ eλ

(
1 − e−q2/m

)
. (12.19)

Moreover, we have

12
q+1∑

r=1

(
m

r

)(
λ

m

)r+1

≤ 12λ

m

q+1∑

r=1

λr

r! ≤ 12λ · eλ

m
, (12.20)
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and

1√
vT

q+1∑

r=1

(
m

r

)
104r + 102r

√
ε

(
(λm)r− 1

2 + λr · mr−1
)

≤ 1√
vT

· 2√
ε

q+1∑

r=1

λr

r! · (101m)2q+2 ≤ 1√
vT

· 2√
ε

· eλ · (101m)2q+2. (12.21)

Using (12.18)–(12.21) in (12.17), we obtain
∣
∣
∣
∣

1

T
μ{0 ≤ t ≤ T : YA(ω; t) = 0} − e−λ

∣
∣
∣
∣

≤
∞∑

r=q+1

(
eλ

r

)r

+ eλ
(

1 − e−q2/m
)

+ 12λ · eλ

m
+ 1√

vT
· 2√

ε
· eλ · (101m)2q+2.

(12.22)

Now we are ready to specify the values of the key parameters m and q (where 1 ≤ q =
odd < m < N ): let

m = min

{
e

1
2

√
log(vT )

101
,
√

N

}

and q = logm, (12.23)

where log denotes the natural (i.e., base e) logarithm. Note that m and q (= odd) are integers,
so in (12.23) we actually take the nearest integers.

We have

(101m)2q+2 ≤ e
1
2 log(vT )

m2
=

√
vT

m2
,

1 − e−q2/m ≤ 2
q2

m
= 2

(logm)2

m
,

and
∞∑

r=q+1

(
eλ

r

)r

≤ e−q = 1

m
if 0 < λ ≤ logm

e2
.

Using these facts in (12.22), we conclude that
∣
∣
∣
∣

1

T
μ{0 ≤ t ≤ T : YA(ω; t) = 0} − e−λ

∣
∣
∣
∣

≤ 1

m
+ 2eλ(logm)2

m
+ 12λ · eλ

m
+ 2√

ε
· eλ

m2

≤ 1

m
+ 2me−2

(logm)2

m
+ 12λ · me−2

m
+ 2√

ε
· me−2

m2

≤ 1

m3/4
+ 2√

ε
· 1

m
(12.24)
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if

0 < λ ≤ logm

e2
. (12.25)

This basically proves the special case k = 0 in (1.10).
Next let k ≥ 1 be an arbitrary positive integer, and we describe the density of the point-

counting function YA(ω; t) = k as 0 ≤ t ≤ T . We basically repeat the argument of the special
case k = 0 above with some natural modifications.

Our starting point is the following inequality, which can be considered as an analog of
(5.32): for any 1 ≤ k ≤ m we have

∣
∣
∣
∣
∣

1

T
μ{0 ≤ t ≤ T : YA(ω; t) = k}

−
∑

1≤j1<···<jk≤m

μ

(
k⋂

i=1

Wji (ω;γ ;1) ∩
⋂

1≤h≤m:
h�=ji , 1≤i≤k

Wh(ω;γ ;0)

)∣
∣
∣
∣
∣

≤
m∑

h=1

μ(Wh(ω;γ ;≥ 2)) . (12.26)

For notational convenience, for any fixed sequence 1 ≤ j1 < · · · < jk ≤ m of length k we
write

J = {j1, . . . , jk} and W ∗(J ) =
k⋂

i=1

Wji (ω;γ ;1).

By using Brunn’s sieve (Lemma 12.2), we have

μ

(
k⋂

i=1

Wji (ω;γ ;1) ∩
⋂

1≤h≤m:
h�=ji , 1≤i≤k

Wh(ω;γ ;0)

)

≥ μ
(
W ∗(J )

)−
∑

1≤h≤m:
h/∈J

μ
(
W ∗(J ) ∩ Wh(ω;γ ;≥ 1)

)

+
∑

1≤h1<h2≤m:
hi /∈J , 1≤i≤2

μ
(
W ∗(J ) ∩ Wh1(ω;γ ;≥ 1) ∩ Wh2(ω;γ ;≥ 1)

)∓ · · ·

+ (−1)q−k
∑

1≤h1<···<hq−k≤m:
hi /∈J , 1≤i≤q−k

μ
(
W ∗(J ) ∩ Wh1(ω;γ ;≥ 1) ∩ · · ·

∩ Whq−k
(ω;γ ;≥ 1)

)
, (12.27)

assuming (q − k) is odd, and similarly, under the same condition, we have the other inequal-
ity:

μ

(
k⋂

i=1

Wji (ω;γ ;1) ∩
⋂

1≤h≤m:
h�=ji , 1≤i≤k

Wh(ω;γ ;0)

)
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≤ μ
(
W ∗(J )

)−
∑

1≤h≤m:
h/∈J

μ
(
W ∗(J ) ∩ Wh(ω;γ ;≥ 1)

)

+
∑

1≤h1<h2≤m:
hi /∈J , 1≤i≤2

μ
(
W ∗(J ) ∩ Wh1(ω;γ ;≥ 1) ∩ Wh2(ω;γ ;≥ 1)

)∓ · · ·

+ (−1)q−k+1
∑

1≤h1<···<hq−k+1≤m:
hi /∈J , 1≤i≤q−k+1

μ
(
W ∗(J ) ∩ Wh1(ω;γ ;≥ 1) ∩ · · ·

∩ Whq−k+1(ω;γ ;≥ 1)
)
. (12.28)

If (q − k) is even, then of course in (12.27)–(12.28) we have to make a switch between ≥
and ≤.

Notice that (12.27)–(12.28) are analogs of (12.12)–(12.13). By repeating the arguments
after (12.13), we obtain the following analog of (12.15): for any 1 ≤ k ≤ q we have

∣
∣
∣
∣
∣

1

T
μ{0 ≤ t ≤ T : YA(ω; t) = k} −

(
m

k

)(
λ

m

)k

+
(

m

k

)(
m − k

1

)(
λ

m

)k+1

∓ · · · + (−1)q−k−1

(
m

k

)(
m − k

q − k

)(
λ

m

)q
∣
∣
∣
∣
∣

≤ m

(
λ

m

)2

+
q+1∑

r=1

12

(
m

r

)(
λ

m

)r+1

+
q+1∑

r=1

(
m

r

)
1√
vT

· 104r + 102r

√
ε

(
(λm)r− 1

2 + λr · mr−1
)

, (12.29)

where the term m( λ
m
)2 comes from the contribution of the last line in (12.26).

Similarly to (12.15), first we estimate the inner sum in (12.29):

∑
(∗) =

(
m

k

)(
λ

m

)k

−
(

m

k

)(
m − k

1

)(
λ

m

)k+1

± · · ·

+ (−1)q−k

(
m

k

)(
m − k

q − k

)(
λ

m

)q

=
(

m

k

)(
λ

m

)k
(

1 −
(

1 − k

m

)

λ +
(

1 − k

m

)(

1 − k + 1

m

)
λ2

2!

−
(

1 − k

m

)(

1 − k + 1

m

)(

1 − k + 2

m

)
λ3

3! ± · · ·

+ (−1)q−k

(

1 − k

m

)

· · ·
(

1 − q − 1

m

)
λq−k

(q − k)!

)

. (12.30)
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Using the arguments in (12.18)–(12.19), we have
∣
∣
∣
∣

∑
(∗) − λk

k! e
−λ

∣
∣
∣
∣≤

e2λq2

m
. (12.31)

Repeating the arguments in (12.20)–(12.24), by (12.29)–(12.31) we obtain the following
analog of (12.24): for every k in 0 ≤ k ≤ q = logm,

∣
∣
∣
∣

1

T
μ{0 ≤ t ≤ T : YA(ω; t) = k} − λk

k! e
−λ

∣
∣
∣
∣

≤ e2λq2

m
+ 1

m3/4
+ 2√

ε
· 1

m
<

2

m3/4
+ 2√

ε
· 1

m
(12.32)

if

0 < λ ≤ logm

e2
. (12.33)

Summarizing, by (12.23)–(12.25) and (12.32) we have that, with

m = min

{
e

1
2

√
log(vT )

101
,
√

N

}

and ε = 1√
m

,

for more than 1 − ε part of the initial conditions

ω = (y1, . . . ,yN,u1, . . . ,uN) ∈ �,

the estimation
∣
∣
∣
∣

1

T
μ{0 ≤ t ≤ T : YA(ω; t) = k} − λk

k! e
−λ

∣
∣
∣
∣<

1√
m

(12.34)

holds for all integers k in 0 ≤ k ≤ q = logm.
Note that the remaining case k > logm is trivial, since then the main term becomes

much smaller than the error term. Indeed, taking the sum of (12.32) for k = 0,1, . . . , q , and
subtracting it from 1, we obtain

1

T
μ{0 ≤ t ≤ T : YA(ω; t) > q = logm}

≤
(

1 −
q∑

k=0

λk

k! e
−λ

)

+ 2q + 2

m3/4
+ 2q + 2√

ε
· 1

m

< e−λ
∑

k>logm

λk

k! + 2 logm + 2

m3/4
+ 2 logm + 2√

ε
· 1

m
<

1

m2/3
, (12.35)

where in the last line we used the upper bound (12.33) for λ. Combining (12.34)–(12.35),
(1.10) follows.

The proof of the product formula (1.11) is a straightforward adaptation of the proof of
(1.10) above. The obvious difference is that we work with the Cartesian product A1 × · · · ×
Ar instead of A, and consequently, we begin the proof with an application of Lemma 9.1
instead of an application of Lemma 5.1. Apart from this, the rest of the argument is basically
the same. This completes the proof of Theorem 1.
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Concluding Remark: How to Sequentialize Theorem 1? Here we briefly outline how to
modify the proof of Theorem 1 to obtain (1.12)–(1.13). The basic idea is very simple. Instead
of working with a fixed time interval [0, T ] (what we did in Theorem 1), we have to work
with all intervals [0, T ′] simultaneously, where T ′ runs through all integers in the range
(1.12) (i.e., 2 < T < eN1/8

) with “short” binary representation

T ′ = 2n1 + 2n2 + 2n3 + · · · + 2np (12.36)

where p ≥ 1, n1 > n2 > n3 > · · · > np ≥ n1 − �(n1). The only new idea in the proof is
how to specify the value of the new parameter � = �(n1). Note that, if � = �(n1) is “small”
compared to n1, then, for fixed n1, there are relatively few integers T ′ of the short binary
form (12.36)—indeed, the exact number is 2� = 2�(n1). On the other hand, we want the set
of integers of the form (12.36) to be relatively “dense”, so � = �(n1) cannot be too small.

I recall (1.12) and the line after:

m(T ) = min

{
e

1
2

√
log(vT )

101
,
√

N

}

and ε(T ) = 1√
m(T )

if 2 < T < eN1/8
. Motivated by this, the best compromise for � = �(n1) is the following: let

� = �(n1) be in the range of
√

n1 if

2 < T ′ < N logN = e(logN)2
,

and let � = �(n1) be in the range of logN if

N logN ≤ T ′ < eN1/8
.

With this choice, there are relatively few integers T ′ of the short binary form (12.36), and,
at the same time, the set of integers of the form (12.36) is relatively “dense” in the range
(1.12) (i.e., in the interval [2, eN1/8 ]). This is how we obtain, by a straightforward adaptation
of the proof of Theorem 1, the sequential result (1.13).

Also, we can easily extend Theorem 1 to large families of time intervals [T1, T2] in the
range 0 ≤ T1 < T2 < eN1/8

. That is, the starting point T1 can also be a variable. The only
new idea that we need here is to involve Liouville’s classical theorem: the time-flow of a
Hamiltonian system preserves the standard volume (Lebesgue measure) in the phase space.
(Or as the physicists like to put it: the “ensemble fluid” moves as if it were an incompressible
fluid.) We need Liouville’s theorem for the following reason. Theorem 1 (and any other key
result in this paper) is a statement about “1 − ε part of the initial conditions”, and because
of Liouville’s theorem, it doesn’t matter that we choose the time-point t = 0 or any other
t = T1 > 0. The time-flow is measure-preserving, so “1 − ε part” at t = 0 remains “1 − ε

part” later at any other time-point t = T1 > 0.
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